# 1 "/xwin3.5/exp/stan/nmr/lists/pp/ipapfhsqc.s" ;ipapfhsqc.fa ;2D IPAP 15N-1H FHSQC using 3-9-19 reverse INEPT ;Ottiger et al., J. Magn. Reson. 131,373-378 (1998) ;Mori et al., J. Magn. Reson. B 108, 94-98 (1995) ;Bruker Avance/Xwin-nmr version ;Written up by F. Abildgaard, NMRFAM (abild@nmrfam.wisc.edu) ; ; $Id: ipapfhsqc.fa,v 1.1 2002/11/22 22:19:23 abild Exp abild $ ; ; Disclaimer: This pulse program is provided "as is" for your ; information. Support for the use of this pulse program is only ; provided to users of the National Magnetic Resonance Facility ; at Madison (NMRFAM). Users of this pulse program employ it at ; their own risk. Neither NMRFAM nor University of Wisconsin-Madison ; are liable for any physical or other damage incurred during the ; use of this pulse program. ; ;f1: 1H, f2, f3: 13C: 15N (channel assignments may be changed below) ;o1p: 4.7 ppm ;o2p: 118 ppm ;o3p:: 55 ppm ; ;d1: relaxation delay=d1+0.100s ;p1 90 H1 at pl1 ;p11 90 2.0 ms H1 semi-selective H2O flip-back pulse at power: ; 1) pl21 (zgsel1.fa), with phcor21, phcor24; ; 2) pl22 (zgsel2.fa), with phcor22. ; Check for a possible phase difference between hard H1 and soft H1 ; pulses and set phcor21, phcor22, and phcor24 accordingly. ;p2 90 N15 at pl2 ;p4 90 dgr. Ca at pl4 for 180 dgr. regular semi-selective: ; field strength=dNu/sqrt(3), dNu=(176ppm-55ppm)*bf3. p4 24.4 us at 600 MHz. ;p5 180 dgr. CO square shaped (spnam5) at power sp5, offset CO-Ca, ; semi-selective: field strength=dNu/sqrt(3), dNu=(176ppm-55ppm)*bf3. ; p5 48.8 us at 600 MHz. ;d21: 1/(2*dNu), dNu=(ChSh(NH)-ChSh(H2O))*bf1, 300 us at 500 MHz ; ; ;N15 Waltz-16 (cpdprg2), 90 dgr pulse (PCPD) at pl12 ;IP and AP FIDs are acquired interleaved. ; Set cnst2 to 0 or 1: ; "0" if "IP" spectra are to be acquired before "AP" spectra ; "1" if "AP" spectra are to be acquired after "IP" spectra ; cnst2 = 1 can be used in TEST_2D mode to collect either 2D IP or AP spectra. ; With cnst2 = 0, the IP 2D spectrum is stored in rows 1, 3, 5, ... ; and the AP 2D is stored in rows 2, 4, 6, ... ; ;N15 evolution: ; in0, SW(N)=1/(2*in0) ; l4 complex points. Set '1 td' to 4*l4. ; set cnst0 to 0 (preferably) or 1 to make d0 the smallest possible ; positive delay. cnst0=0 gives (90,-180) phase distortion in F1. ; cnst0=1 gives (270,-540) phase distortion in F1 (use Linear Prediction ; during processing to extend FIDs cnst0 points backwards to end up ; with (90,-180) phase correction). ; ;ns=16, 32,..., ds=16, 32,... ; ;Recommendations for gradients, three axis (single axis): ;gpx1: 22% (0%) ;gpz1: 0% (22%) ;gpy2: 6% (0%) ;gpz2: 0% (6%) ;gpz3: 15% (15%) ;gpy4: 12% (0%) ;gpz4: 0% (12%) ;gpx5: 54%, adjust for magic-angle (0%) ;gpz5: 30% (55%) ;gpz6: 18% (18%) ;gpnam1: sine.50 ;gpnam2: sine.50 ;gpnam3: sine.100 ;gpnam4: sine.50 ;gpnam5: sine.100 ;gpnam6: sine.32 ; ;Define one or more of the following options to tailor this pulse program ; to your specific needs. ; ;#define ONE_D ; uncomment for 1D experiment ;#define TEST_2D ; uncomment for separate 2Ds (IP or AP, depending on cnst2) ; the correct exp. time (works with XWIN-NMR 2.x) ; ;Define channel assignments: ; ;You shouldn't have to worry about anything beyond this point :-) ; define delay TAU define delay TAU2 define delay TAU5 define delay TAUW define delay TAUW1 define delay DELTA define delay DELTA6 define delay CEN_HN1 define pulse GRAD1 define pulse GRAD2 define pulse GRAD3 define pulse GRAD4 define pulse GRAD5 define pulse GRAD6 define pulse GRAD7 define pulse GRAD8 define pulse GRAD9 define pulse GRAD10 define pulse H1_90 define pulse H1_180 define pulse H1_S90 define pulse N15_90 define pulse N15_180 define pulse CA_180 define pulse CO_180 "d11=100m" ;disk i/o "d12=10u" ;power switching etc. "d13=5u" ;a short delay "d14=60u" ;ip,id etc. "d16=300u" ;gradient recovery "H1_90=p1" "H1_180=H1_90*2" "H1_S90=p11" "N15_90=p2" "N15_180=N15_90*2" "CA_180=p4*2" "CO_180=p5" "GRAD1=400u" "GRAD2=500u" "GRAD3=1.0m" "GRAD4=500u" "GRAD5=700u" "GRAD6=300u" "d6=H1_90" "TAUW=d21" "TAU=2.3m" ;1/(4Jnh) w/ relax. comp. "DELTA=2.67m" ;1/(4Jnh) "DELTA6=DELTA-GRAD6-d16" "TAU2=TAU-GRAD2-d13" "TAU5=TAU-TAUW*2.5-H1_90*2.385-GRAD5-d16-d13" "TAUW1=(TAUW/2)-N15_90" "CEN_HN1=N15_90-H1_90" "d0=((cnst0*2+1)*in0-4*N15_90/3.142-CA_180-CO_180-d12*2-d13*3)/2" "d24=4*N15_90/3.142" ;makes IP and AP similar with respect to d0 "d31=2*(GRAD2+TAU2+GRAD5+TAU5+TAUW*2+TAUW1)+GRAD1+GRAD3+GRAD6+DELTA6+GRAD4" "l2=cnst2" # 1 "/xwin3.5/exp/stan/nmr/lists/pp/Avance.incl" 1 ;Avance.incl ; ;avance-version (03/02/17) ;$Id: Avance1.incl,v 1.7.2.3 2003/02/25 14:48:47 ber Exp $ # 168 "/xwin3.5/exp/stan/nmr/lists/pp/ipapfhsqc.s" 2 # 1 "/xwin3.5/exp/stan/nmr/lists/pp/Grad.incl" 1 ;Grad.incl - include file for Gradient Spectroscopy ; ;avance-version (02/05/31) define list EA= ;$Id: Grad1.incl,v 1.7 2002/06/12 09:04:22 ber Exp $ # 169 "/xwin3.5/exp/stan/nmr/lists/pp/ipapfhsqc.s" 2 1 ze 2 d13 do:f3 d11 setnmr2^0 d14 5 d14 d14 3 d14 d14 d14 4 d13 # 1 "/xwin3.5/exp/stan/nmr/lists/pp/faexptcorr.incl" 1 ; This is here to trick "expt" to calculate the experiment time ; correctly. if "1 == 1" goto nod31 d31 nod31, d13 # 182 "/xwin3.5/exp/stan/nmr/lists/pp/ipapfhsqc.s" 2 d1 pl1:f1 pl2:f3 d13 setnmr2|0 d13 setnmr0|34|32|33 ; Purge 15N magnetization (N15_90 ph0):f3 d13 GRAD1:gp1 ; 400 us, 15 G/cm, x, sine.50 d16 ; INEPT transfer from f1 to f3 (H1_90 ph0):f1 d13 GRAD2:gp2 ; 500 us, 4 G/cm, y, sine.50 d16 TAU2 (CEN_HN1 H1_180 ph0):f1 (N15_180 ph12):f3 d13 TAU2 GRAD2:gp2 ; 500 us, 4 G/cm, y, sine.50 d16 (H1_90 ph11):f1 (d13 d12 pl22 H1_S90 ph22:r d13 d12 pl1):f1 ;2ms 90 H1 pulse at phase x d13 GRAD3:gp3 ; 1.0 ms, 10 G/cm, z, sine.100 d16 (N15_90 ph12):f3 if "l2 % 2 == 0" goto 9 ; Sequence for generating Anti-Phase (DELTA6) (d13 d12 pl21 H1_S90 ph24:r d13 d12 pl1):f1 ;2ms 90 H1 pulse at phase ph14 d6 GRAD6:gp6 ; 300 us, 12 G/cm, z, sine.32 d16 (CEN_HN1 H1_180 ph0):f1 (N15_180 ph13):f3 DELTA6 GRAD6:gp6 ; 300 us, 12 G/cm, z, sine.32 d16 (H1_90 ph14):f1 d24 9 d13 ; N15 evolution (t1) d0 (d12 pl4 CA_180 ph0 d13 d12 pl0 CO_180:sp5 ph0):f2 d0 d13 if "l2 % 2 == 0" goto 11 10 (N15_90 ph16):f3 goto 12 11 (N15_90 ph15):f3 12 d13 GRAD4:gp4 ; 500 us, 8 G/cm, y, sine.50 d16 ; Reverse INEPT transfer back to f1 (d13 d12 pl21 H1_S90 ph21:r d13 d12 pl1):f1 ;2ms 90 H1 pulse at phase x (H1_90 ph2):f1 d13 TAU5 GRAD5:gp5 ; 700 us, 40 G/cm, ma, sine.100 d16 (H1_90*0.231 ph1):f1 TAUW (H1_90*0.692 ph1):f1 TAUW (H1_90*1.462 ph1):f1 TAUW1 (N15_180 ph0):f3 TAUW1 (H1_90*1.462 ph3):f1 TAUW (H1_90*0.692 ph3):f1 TAUW (H1_90*0.231 ph3):f1 d13 GRAD5:gp5 ; 700 us, 40 G/cm, ma, sine.100 d16 pl12:f3 TAU5 d6 setnmr0^34^32^33 go=2 ph31 cpds2:f3 d11 do:f3 wr #0 if #0 zd d13 setnmr2^0 d14 iu2 lo to 5 times 2 d14 dp15 d14 dp16 lo to 3 times 2 d14 id0 d14 ip31 d14 ip31 lo to 4 times l4 exit ph0=0 ph1=1 ph2=2 ph3=3 ph11=1 3 ph12={0}*2 {2}*2 ph13=0 ;{0}*4 {1}*4 {2}*4 {3}*4 ph14={0}*4 {2}*4 ;{0}*8 {2}*8 ph15=0 ph16=1 ;{1}*4 {3}*4 ph21=0 ph22=0 ph24={0}*4 {2}*4 ;{0}*8 {2}*8 ph31=0 2 2 0