============================================================ | | | Crystallography & NMR System (CNS) | | CNSsolve | | | ============================================================ Version: 1.1 Status: Developmental version ============================================================ Written by: A.T.Brunger, P.D.Adams, G.M.Clore, W.L.DeLano, P.Gros, R.W.Grosse-Kunstleve, J.-S.Jiang, J.Kuszewski, M.Nilges, N.S.Pannu, R.J.Read, L.M.Rice, T.Simonson, G.L.Warren. Copyright (c) 1997-1999 Yale University ============================================================ Running on machine: cesg-master.biochem.wisc.edu (Linux,32-bit) Program started by: lytle Program started at: 10:55:47 on 4-Feb-06 ============================================================ FFT3C: Using FFTPACK4.1 CNSsolve>define( DEFINE>{* selection of atoms other than hydrogens for which coordinates DEFINE> will be generated *} DEFINE>{* to generate coordinates for all unknown atoms use: (not(known)) *} DEFINE>{===>} atom_build=(not(known)); DEFINE>{============================= output files ================================} DEFINE> DEFINE>{* input coordinate file *} DEFINE>{===>} coordinate_infile="1xxx_1.pdb"; DEFINE> DEFINE>{* output coordinate file *} DEFINE>{===>} coordinate_outfile="1xxx_1_cns.pdb"; DEFINE>) CNSsolve> CNSsolve> checkversion 1.1 Program version= 1.1 File version= 1.1 CNSsolve> CNSsolve> evaluate ($log_level=verbose) Assuming literal string "VERBOSE" EVALUATE: symbol $LOG_LEVEL set to "VERBOSE" (string) CNSsolve> evaluate ($par_nonbonded="PROLSQ") EVALUATE: symbol $PAR_NONBONDED set to "PROLSQ" (string) CNSsolve> CNSsolve> !@generateProtonsJFD.inp CNSsolve> CNSsolve>{===========================================================================} CNSsolve>{ things below this line do not need to be changed } CNSsolve>{===========================================================================} CNSsolve> CNSsolve>remarks changed Tue Sep 2 09:48:07 CDT 2003 CNSsolve>remarks by jfd to include a fes residue CNSsolve> CNSsolve>!@generate_tmoc.inp CNSsolve> CNSsolve>topology reset end CNSsolve>structure reset end Status of internal molecular topology database: -> NATOM= 0(MAXA= 40000) NBOND= 0(MAXB= 40000) -> NTHETA= 0(MAXT= 80000) NGRP= 0(MAXGRP= 40000) -> NPHI= 0(MAXP= 80000) NIMPHI= 0(MAXIMP= 40000) -> NNB= 0(MAXNB= 40000) CNSsolve> CNSsolve>topology RTFRDR>{===>} @TOPPAR:topallhdg5.3.pro ASSFIL: file /u/francis/waterrefine/toppar/topallhdg5.3.pro opened. RTFRDR>remark file topallhdg.pro version 5.3 date 23-Sept-02 RTFRDR>remark for file parallhdg.pro version 5.3 date 13-Feb-02 or later RTFRDR>remark Geometric energy function parameters for distance geometry and RTFRDR>remark simulated annealing. RTFRDR>remark Author: Michael Nilges, EMBL Heidelberg; Institut Pasteur, Paris RTFRDR>remark This file contains modifications from M. Williams, UCL London RTFRDR>remark Last modification 16-Sept-02 RTFRDR> RTFRDR>set echo off message off end RTFRDR>end CNSsolve> CNSsolve>! no chain id. CNSsolve>segment name=" " SEGMENT> chain CHAIN> @TOPPAR:topallhdg5.3.pep CHAIN>REMARKS TOPH19.pep -MACRO for protein sequence CHAIN>SET ECHO=FALSE END CHAIN> sequence SEQUENCE> @1xxx.seq SEQUENCE>GLY SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =TYR SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ALA SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =TRP SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =THR SEQUence-element (terminate with END) =PHE SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =MET SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =CYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =LYS SEQUence-element (terminate with END) =PRO SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) =GLY SEQUence-element (terminate with END) =ASN SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =ILE SEQUence-element (terminate with END) =SER SEQUence-element (terminate with END) =HIS SEQUence-element (terminate with END) =VAL SEQUence-element (terminate with END) =LEU SEQUence-element (terminate with END) =ARG SEQUence-element (terminate with END) =GLU SEQUence-element (terminate with END) =ASP SEQUence-element (terminate with END) =GLN SEQUence-element (terminate with END) = end SEGMNT: 173 residues were inserted into segment " " CHAIN> end SEGMENT>end Status of internal molecular topology database: -> NATOM= 2794(MAXA= 40000) NBOND= 2828(MAXB= 40000) -> NTHETA= 5113(MAXT= 80000) NGRP= 175(MAXGRP= 40000) -> NPHI= 4293(MAXP= 80000) NIMPHI= 1491(MAXIMP= 40000) -> NNB= 984(MAXNB= 40000) CNSsolve> CNSsolve> CNSsolve>! removes the hydrogen on the cys-en CNSsolve>! and changes the atom type from SH1E to S. CNSsolve>!patch DISU reference=1=( resid 45 ) CNSsolve>! reference=2=( resid 64 ) CNSsolve>! end CNSsolve> CNSsolve> CNSsolve>! turn peptide from trans to cis CNSsolve>!patch CISP reference=nil=( resid 80 ) end CNSsolve> CNSsolve>coor @&coordinate_infile COOR>HEADER STRUCTURE FROM CYANA 2.1 04-FEB-06 1PDB COOR>EXPDTA NMR, 20 STRUCTURES COOR>REMARK model 1 COOR>ATOM 1 N GLY A 1 1.330 0.000 0.000 1.00 13.00 %READC-ERR: atom 1 GLY H not found in molecular structure %READC-ERR: atom 1 GLY 2HA not found in molecular structure %READC-ERR: atom 1 GLY 3HA not found in molecular structure %READC-ERR: atom 2 HIS H not found in molecular structure %READC-ERR: atom 2 HIS 2HB not found in molecular structure %READC-ERR: atom 2 HIS 3HB not found in molecular structure %READC-ERR: atom 3 HIS H not found in molecular structure %READC-ERR: atom 3 HIS 2HB not found in molecular structure %READC-ERR: atom 3 HIS 3HB not found in molecular structure %READC-ERR: atom 4 HIS H not found in molecular structure %READC-ERR: atom 4 HIS 2HB not found in molecular structure %READC-ERR: atom 4 HIS 3HB not found in molecular structure %READC-ERR: atom 5 HIS H not found in molecular structure %READC-ERR: atom 5 HIS 2HB not found in molecular structure %READC-ERR: atom 5 HIS 3HB not found in molecular structure %READC-ERR: atom 6 HIS H not found in molecular structure %READC-ERR: atom 6 HIS 2HB not found in molecular structure %READC-ERR: atom 6 HIS 3HB not found in molecular structure %READC-ERR: atom 7 HIS H not found in molecular structure %READC-ERR: atom 7 HIS 2HB not found in molecular structure %READC-ERR: atom 7 HIS 3HB not found in molecular structure %READC-ERR: atom 8 LEU H not found in molecular structure %READC-ERR: atom 8 LEU 2HB not found in molecular structure %READC-ERR: atom 8 LEU 3HB not found in molecular structure %READC-ERR: atom 8 LEU 1HD1 not found in molecular structure %READC-ERR: atom 8 LEU 2HD1 not found in molecular structure %READC-ERR: atom 8 LEU 3HD1 not found in molecular structure %READC-ERR: atom 8 LEU 1HD2 not found in molecular structure %READC-ERR: atom 8 LEU 2HD2 not found in molecular structure %READC-ERR: atom 8 LEU 3HD2 not found in molecular structure %READC-ERR: atom 9 GLU H not found in molecular structure %READC-ERR: atom 9 GLU 2HB not found in molecular structure %READC-ERR: atom 9 GLU 3HB not found in molecular structure %READC-ERR: atom 9 GLU 2HG not found in molecular structure %READC-ERR: atom 9 GLU 3HG not found in molecular structure %READC-ERR: atom 10 CYS H not found in molecular structure %READC-ERR: atom 10 CYS 2HB not found in molecular structure %READC-ERR: atom 10 CYS 3HB not found in molecular structure %READC-ERR: atom 11 SER H not found in molecular structure %READC-ERR: atom 11 SER 2HB not found in molecular structure %READC-ERR: atom 11 SER 3HB not found in molecular structure %READC-ERR: atom 12 SER H not found in molecular structure %READC-ERR: atom 12 SER 2HB not found in molecular structure %READC-ERR: atom 12 SER 3HB not found in molecular structure %READC-ERR: atom 13 ASP H not found in molecular structure %READC-ERR: atom 13 ASP 2HB not found in molecular structure %READC-ERR: atom 13 ASP 3HB not found in molecular structure %READC-ERR: atom 14 SER H not found in molecular structure %READC-ERR: atom 14 SER 2HB not found in molecular structure %READC-ERR: atom 14 SER 3HB not found in molecular structure %READC-ERR: atom 15 LEU H not found in molecular structure %READC-ERR: atom 15 LEU 2HB not found in molecular structure %READC-ERR: atom 15 LEU 3HB not found in molecular structure %READC-ERR: atom 15 LEU 1HD1 not found in molecular structure %READC-ERR: atom 15 LEU 2HD1 not found in molecular structure %READC-ERR: atom 15 LEU 3HD1 not found in molecular structure %READC-ERR: atom 15 LEU 1HD2 not found in molecular structure %READC-ERR: atom 15 LEU 2HD2 not found in molecular structure %READC-ERR: atom 15 LEU 3HD2 not found in molecular structure %READC-ERR: atom 16 GLN H not found in molecular structure %READC-ERR: atom 16 GLN 2HB not found in molecular structure %READC-ERR: atom 16 GLN 3HB not found in molecular structure %READC-ERR: atom 16 GLN 2HG not found in molecular structure %READC-ERR: atom 16 GLN 3HG not found in molecular structure %READC-ERR: atom 16 GLN 1HE2 not found in molecular structure %READC-ERR: atom 16 GLN 2HE2 not found in molecular structure %READC-ERR: atom 17 LEU H not found in molecular structure %READC-ERR: atom 17 LEU 2HB not found in molecular structure %READC-ERR: atom 17 LEU 3HB not found in molecular structure %READC-ERR: atom 17 LEU 1HD1 not found in molecular structure %READC-ERR: atom 17 LEU 2HD1 not found in molecular structure %READC-ERR: atom 17 LEU 3HD1 not found in molecular structure %READC-ERR: atom 17 LEU 1HD2 not found in molecular structure %READC-ERR: atom 17 LEU 2HD2 not found in molecular structure %READC-ERR: atom 17 LEU 3HD2 not found in molecular structure %READC-ERR: atom 18 HIS H not found in molecular structure %READC-ERR: atom 18 HIS 2HB not found in molecular structure %READC-ERR: atom 18 HIS 3HB not found in molecular structure %READC-ERR: atom 19 ASN H not found in molecular structure %READC-ERR: atom 19 ASN 2HB not found in molecular structure %READC-ERR: atom 19 ASN 3HB not found in molecular structure %READC-ERR: atom 19 ASN 1HD2 not found in molecular structure %READC-ERR: atom 19 ASN 2HD2 not found in molecular structure %READC-ERR: atom 20 VAL H not found in molecular structure %READC-ERR: atom 20 VAL 1HG1 not found in molecular structure %READC-ERR: atom 20 VAL 2HG1 not found in molecular structure %READC-ERR: atom 20 VAL 3HG1 not found in molecular structure %READC-ERR: atom 20 VAL 1HG2 not found in molecular structure %READC-ERR: atom 20 VAL 2HG2 not found in molecular structure %READC-ERR: atom 20 VAL 3HG2 not found in molecular structure %READC-ERR: atom 21 PHE H not found in molecular structure %READC-ERR: atom 21 PHE 2HB not found in molecular structure %READC-ERR: atom 21 PHE 3HB not found in molecular structure %READC-ERR: atom 22 VAL H not found in molecular structure %READC-ERR: atom 22 VAL 1HG1 not found in molecular structure %READC-ERR: atom 22 VAL 2HG1 not found in molecular structure %READC-ERR: atom 22 VAL 3HG1 not found in molecular structure %READC-ERR: atom 22 VAL 1HG2 not found in molecular structure %READC-ERR: atom 22 VAL 2HG2 not found in molecular structure %READC-ERR: atom 22 VAL 3HG2 not found in molecular structure %READC-ERR: atom 23 TYR H not found in molecular structure %READC-ERR: atom 23 TYR 2HB not found in molecular structure %READC-ERR: atom 23 TYR 3HB not found in molecular structure %READC-ERR: atom 24 GLY H not found in molecular structure %READC-ERR: atom 24 GLY 2HA not found in molecular structure %READC-ERR: atom 24 GLY 3HA not found in molecular structure %READC-ERR: atom 25 SER H not found in molecular structure %READC-ERR: atom 25 SER 2HB not found in molecular structure %READC-ERR: atom 25 SER 3HB not found in molecular structure %READC-ERR: atom 26 PHE H not found in molecular structure %READC-ERR: atom 26 PHE 2HB not found in molecular structure %READC-ERR: atom 26 PHE 3HB not found in molecular structure %READC-ERR: atom 27 GLN H not found in molecular structure %READC-ERR: atom 27 GLN 2HB not found in molecular structure %READC-ERR: atom 27 GLN 3HB not found in molecular structure %READC-ERR: atom 27 GLN 2HG not found in molecular structure %READC-ERR: atom 27 GLN 3HG not found in molecular structure %READC-ERR: atom 27 GLN 1HE2 not found in molecular structure %READC-ERR: atom 27 GLN 2HE2 not found in molecular structure %READC-ERR: atom 28 ASP H not found in molecular structure %READC-ERR: atom 28 ASP 2HB not found in molecular structure %READC-ERR: atom 28 ASP 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HB not found in molecular structure %READC-ERR: atom 29 PRO 3HB not found in molecular structure %READC-ERR: atom 29 PRO 2HG not found in molecular structure %READC-ERR: atom 29 PRO 3HG not found in molecular structure %READC-ERR: atom 29 PRO 2HD not found in molecular structure %READC-ERR: atom 29 PRO 3HD not found in molecular structure %READC-ERR: atom 30 ASP H not found in molecular structure %READC-ERR: atom 30 ASP 2HB not found in molecular structure %READC-ERR: atom 30 ASP 3HB not found in molecular structure %READC-ERR: atom 31 VAL H not found in molecular structure %READC-ERR: atom 31 VAL 1HG1 not found in molecular structure %READC-ERR: atom 31 VAL 2HG1 not found in molecular structure %READC-ERR: atom 31 VAL 3HG1 not found in molecular structure %READC-ERR: atom 31 VAL 1HG2 not found in molecular structure %READC-ERR: atom 31 VAL 2HG2 not found in molecular structure %READC-ERR: atom 31 VAL 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE H not found in molecular structure %READC-ERR: atom 32 ILE 1HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG2 not found in molecular structure %READC-ERR: atom 32 ILE 3HG2 not found in molecular structure %READC-ERR: atom 32 ILE 2HG1 not found in molecular structure %READC-ERR: atom 32 ILE 3HG1 not found in molecular structure %READC-ERR: atom 32 ILE 1HD1 not found in molecular structure %READC-ERR: atom 32 ILE 2HD1 not found in molecular structure %READC-ERR: atom 32 ILE 3HD1 not found in molecular structure %READC-ERR: atom 33 ASN H not found in molecular structure %READC-ERR: atom 33 ASN 2HB not found in molecular structure %READC-ERR: atom 33 ASN 3HB not found in molecular structure %READC-ERR: atom 33 ASN 1HD2 not found in molecular structure %READC-ERR: atom 33 ASN 2HD2 not found in molecular structure %READC-ERR: atom 34 VAL H not found in molecular structure %READC-ERR: atom 34 VAL 1HG1 not found in molecular structure %READC-ERR: atom 34 VAL 2HG1 not found in molecular structure %READC-ERR: atom 34 VAL 3HG1 not found in molecular structure %READC-ERR: atom 34 VAL 1HG2 not found in molecular structure %READC-ERR: atom 34 VAL 2HG2 not found in molecular structure %READC-ERR: atom 34 VAL 3HG2 not found in molecular structure %READC-ERR: atom 35 MET H not found in molecular structure %READC-ERR: atom 35 MET 2HB not found in molecular structure %READC-ERR: atom 35 MET 3HB not found in molecular structure %READC-ERR: atom 35 MET 2HG not found in molecular structure %READC-ERR: atom 35 MET 3HG not found in molecular structure %READC-ERR: atom 35 MET 1HE not found in molecular structure %READC-ERR: atom 35 MET 2HE not found in molecular structure %READC-ERR: atom 35 MET 3HE not found in molecular structure %READC-ERR: atom 36 LEU H not found in molecular structure %READC-ERR: atom 36 LEU 2HB not found in molecular structure %READC-ERR: atom 36 LEU 3HB not found in molecular structure %READC-ERR: atom 36 LEU 1HD1 not found in molecular structure %READC-ERR: atom 36 LEU 2HD1 not found in molecular structure %READC-ERR: atom 36 LEU 3HD1 not found in molecular structure %READC-ERR: atom 36 LEU 1HD2 not found in molecular structure %READC-ERR: atom 36 LEU 2HD2 not found in molecular structure %READC-ERR: atom 36 LEU 3HD2 not found in molecular structure %READC-ERR: atom 37 ASP H not found in molecular structure %READC-ERR: atom 37 ASP 2HB not found in molecular structure %READC-ERR: atom 37 ASP 3HB not found in molecular structure %READC-ERR: atom 38 ARG H not found in molecular structure %READC-ERR: atom 38 ARG 2HB not found in molecular structure %READC-ERR: atom 38 ARG 3HB not found in molecular structure %READC-ERR: atom 38 ARG 2HG not found in molecular structure %READC-ERR: atom 38 ARG 3HG not found in molecular structure %READC-ERR: atom 38 ARG 2HD not found in molecular structure %READC-ERR: atom 38 ARG 3HD not found in molecular structure %READC-ERR: atom 38 ARG 1HH1 not found in molecular structure %READC-ERR: atom 38 ARG 2HH1 not found in molecular structure %READC-ERR: atom 38 ARG 1HH2 not found in molecular structure %READC-ERR: atom 38 ARG 2HH2 not found in molecular structure %READC-ERR: atom 39 THR H not found in molecular structure %READC-ERR: atom 39 THR 1HG2 not found in molecular structure %READC-ERR: atom 39 THR 2HG2 not found in molecular structure %READC-ERR: atom 39 THR 3HG2 not found in molecular structure %READC-ERR: atom 40 PRO 2HB not found in molecular structure %READC-ERR: atom 40 PRO 3HB not found in molecular structure %READC-ERR: atom 40 PRO 2HG not found in molecular structure %READC-ERR: atom 40 PRO 3HG not found in molecular structure %READC-ERR: atom 40 PRO 2HD not found in molecular structure %READC-ERR: atom 40 PRO 3HD not found in molecular structure %READC-ERR: atom 41 GLU H not found in molecular structure %READC-ERR: atom 41 GLU 2HB not found in molecular structure %READC-ERR: atom 41 GLU 3HB not found in molecular structure %READC-ERR: atom 41 GLU 2HG not found in molecular structure %READC-ERR: atom 41 GLU 3HG not found in molecular structure %READC-ERR: atom 42 ILE H not found in molecular structure %READC-ERR: atom 42 ILE 1HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG2 not found in molecular structure %READC-ERR: atom 42 ILE 3HG2 not found in molecular structure %READC-ERR: atom 42 ILE 2HG1 not found in molecular structure %READC-ERR: atom 42 ILE 3HG1 not found in molecular structure %READC-ERR: atom 42 ILE 1HD1 not found in molecular structure %READC-ERR: atom 42 ILE 2HD1 not found in molecular structure %READC-ERR: atom 42 ILE 3HD1 not found in molecular structure %READC-ERR: atom 43 VAL H not found in molecular structure %READC-ERR: atom 43 VAL 1HG1 not found in molecular structure %READC-ERR: atom 43 VAL 2HG1 not found in molecular structure %READC-ERR: atom 43 VAL 3HG1 not found in molecular structure %READC-ERR: atom 43 VAL 1HG2 not found in molecular structure %READC-ERR: atom 43 VAL 2HG2 not found in molecular structure %READC-ERR: atom 43 VAL 3HG2 not found in molecular structure %READC-ERR: atom 44 SER H not found in molecular structure %READC-ERR: atom 44 SER 2HB not found in molecular structure %READC-ERR: atom 44 SER 3HB not found in molecular structure %READC-ERR: atom 45 ALA H not found in molecular structure %READC-ERR: atom 45 ALA 1HB not found in molecular structure %READC-ERR: atom 45 ALA 2HB not found in molecular structure %READC-ERR: atom 45 ALA 3HB not found in molecular structure %READC-ERR: atom 46 THR H not found in molecular structure %READC-ERR: atom 46 THR 1HG2 not found in molecular structure %READC-ERR: atom 46 THR 2HG2 not found in molecular structure %READC-ERR: atom 46 THR 3HG2 not found in molecular structure %READC-ERR: atom 47 LEU H not found in molecular structure %READC-ERR: atom 47 LEU 2HB not found in molecular structure %READC-ERR: atom 47 LEU 3HB not found in molecular structure %READC-ERR: atom 47 LEU 1HD1 not found in molecular structure %READC-ERR: atom 47 LEU 2HD1 not found in molecular structure %READC-ERR: atom 47 LEU 3HD1 not found in molecular structure %READC-ERR: atom 47 LEU 1HD2 not found in molecular structure %READC-ERR: atom 47 LEU 2HD2 not found in molecular structure %READC-ERR: atom 47 LEU 3HD2 not found in molecular structure %READC-ERR: atom 48 PRO 2HB not found in molecular structure %READC-ERR: atom 48 PRO 3HB not found in molecular structure %READC-ERR: atom 48 PRO 2HG not found in molecular structure %READC-ERR: atom 48 PRO 3HG not found in molecular structure %READC-ERR: atom 48 PRO 2HD not found in molecular structure %READC-ERR: atom 48 PRO 3HD not found in molecular structure %READC-ERR: atom 49 GLY H not found in molecular structure %READC-ERR: atom 49 GLY 2HA not found in molecular structure %READC-ERR: atom 49 GLY 3HA not found in molecular structure %READC-ERR: atom 50 PHE H not found in molecular structure %READC-ERR: atom 50 PHE 2HB not found in molecular structure %READC-ERR: atom 50 PHE 3HB not found in molecular structure %READC-ERR: atom 51 GLN H not found in molecular structure %READC-ERR: atom 51 GLN 2HB not found in molecular structure %READC-ERR: atom 51 GLN 3HB not found in molecular structure %READC-ERR: atom 51 GLN 2HG not found in molecular structure %READC-ERR: atom 51 GLN 3HG not found in molecular structure %READC-ERR: atom 51 GLN 1HE2 not found in molecular structure %READC-ERR: atom 51 GLN 2HE2 not found in molecular structure %READC-ERR: atom 52 ARG H not found in molecular structure %READC-ERR: atom 52 ARG 2HB not found in molecular structure %READC-ERR: atom 52 ARG 3HB not found in molecular structure %READC-ERR: atom 52 ARG 2HG not found in molecular structure %READC-ERR: atom 52 ARG 3HG not found in molecular structure %READC-ERR: atom 52 ARG 2HD not found in molecular structure %READC-ERR: atom 52 ARG 3HD not found in molecular structure %READC-ERR: atom 52 ARG 1HH1 not found in molecular structure %READC-ERR: atom 52 ARG 2HH1 not found in molecular structure %READC-ERR: atom 52 ARG 1HH2 not found in molecular structure %READC-ERR: atom 52 ARG 2HH2 not found in molecular structure %READC-ERR: atom 53 PHE H not found in molecular structure %READC-ERR: atom 53 PHE 2HB not found in molecular structure %READC-ERR: atom 53 PHE 3HB not found in molecular structure %READC-ERR: atom 54 ARG H not found in molecular structure %READC-ERR: atom 54 ARG 2HB not found in molecular structure %READC-ERR: atom 54 ARG 3HB not found in molecular structure %READC-ERR: atom 54 ARG 2HG not found in molecular structure %READC-ERR: atom 54 ARG 3HG not found in molecular structure %READC-ERR: atom 54 ARG 2HD not found in molecular structure %READC-ERR: atom 54 ARG 3HD not found in molecular structure %READC-ERR: atom 54 ARG 1HH1 not found in molecular structure %READC-ERR: atom 54 ARG 2HH1 not found in molecular structure %READC-ERR: atom 54 ARG 1HH2 not found in molecular structure %READC-ERR: atom 54 ARG 2HH2 not found in molecular structure %READC-ERR: atom 55 LEU H not found in molecular structure %READC-ERR: atom 55 LEU 2HB not found in molecular structure %READC-ERR: atom 55 LEU 3HB not found in molecular structure %READC-ERR: atom 55 LEU 1HD1 not found in molecular structure %READC-ERR: atom 55 LEU 2HD1 not found in molecular structure %READC-ERR: atom 55 LEU 3HD1 not found in molecular structure %READC-ERR: atom 55 LEU 1HD2 not found in molecular structure %READC-ERR: atom 55 LEU 2HD2 not found in molecular structure %READC-ERR: atom 55 LEU 3HD2 not found in molecular structure %READC-ERR: atom 56 LYS H not found in molecular structure %READC-ERR: atom 56 LYS 2HB not found in molecular structure %READC-ERR: atom 56 LYS 3HB not found in molecular structure %READC-ERR: atom 56 LYS 2HG not found in molecular structure %READC-ERR: atom 56 LYS 3HG not found in molecular structure %READC-ERR: atom 56 LYS 2HD not found in molecular structure %READC-ERR: atom 56 LYS 3HD not found in molecular structure %READC-ERR: atom 56 LYS 2HE not found in molecular structure %READC-ERR: atom 56 LYS 3HE not found in molecular structure %READC-ERR: atom 56 LYS 1HZ not found in molecular structure %READC-ERR: atom 56 LYS 2HZ not found in molecular structure %READC-ERR: atom 56 LYS 3HZ not found in molecular structure %READC-ERR: atom 57 GLY H not found in molecular structure %READC-ERR: atom 57 GLY 2HA not found in molecular structure %READC-ERR: atom 57 GLY 3HA not found in molecular structure %READC-ERR: atom 58 ARG H not found in molecular structure %READC-ERR: atom 58 ARG 2HB not found in molecular structure %READC-ERR: atom 58 ARG 3HB not found in molecular structure %READC-ERR: atom 58 ARG 2HG not found in molecular structure %READC-ERR: atom 58 ARG 3HG not found in molecular structure %READC-ERR: atom 58 ARG 2HD not found in molecular structure %READC-ERR: atom 58 ARG 3HD not found in molecular structure %READC-ERR: atom 58 ARG 1HH1 not found in molecular structure %READC-ERR: atom 58 ARG 2HH1 not found in molecular structure %READC-ERR: atom 58 ARG 1HH2 not found in molecular structure %READC-ERR: atom 58 ARG 2HH2 not found in molecular structure %READC-ERR: atom 59 LEU H not found in molecular structure %READC-ERR: atom 59 LEU 2HB not found in molecular structure %READC-ERR: atom 59 LEU 3HB not found in molecular structure %READC-ERR: atom 59 LEU 1HD1 not found in molecular structure %READC-ERR: atom 59 LEU 2HD1 not found in molecular structure %READC-ERR: atom 59 LEU 3HD1 not found in molecular structure %READC-ERR: atom 59 LEU 1HD2 not found in molecular structure %READC-ERR: atom 59 LEU 2HD2 not found in molecular structure %READC-ERR: atom 59 LEU 3HD2 not found in molecular structure %READC-ERR: atom 60 TYR H not found in molecular structure %READC-ERR: atom 60 TYR 2HB not found in molecular structure %READC-ERR: atom 60 TYR 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HB not found in molecular structure %READC-ERR: atom 61 PRO 3HB not found in molecular structure %READC-ERR: atom 61 PRO 2HG not found in molecular structure %READC-ERR: atom 61 PRO 3HG not found in molecular structure %READC-ERR: atom 61 PRO 2HD not found in molecular structure %READC-ERR: atom 61 PRO 3HD not found in molecular structure %READC-ERR: atom 62 CYS H not found in molecular structure %READC-ERR: atom 62 CYS 2HB not found in molecular structure %READC-ERR: atom 62 CYS 3HB not found in molecular structure %READC-ERR: atom 63 ILE H not found in molecular structure %READC-ERR: atom 63 ILE 1HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG2 not found in molecular structure %READC-ERR: atom 63 ILE 3HG2 not found in molecular structure %READC-ERR: atom 63 ILE 2HG1 not found in molecular structure %READC-ERR: atom 63 ILE 3HG1 not found in molecular structure %READC-ERR: atom 63 ILE 1HD1 not found in molecular structure %READC-ERR: atom 63 ILE 2HD1 not found in molecular structure %READC-ERR: atom 63 ILE 3HD1 not found in molecular structure %READC-ERR: atom 64 VAL H not found in molecular structure %READC-ERR: atom 64 VAL 1HG1 not found in molecular structure %READC-ERR: atom 64 VAL 2HG1 not found in molecular structure %READC-ERR: atom 64 VAL 3HG1 not found in molecular structure %READC-ERR: atom 64 VAL 1HG2 not found in molecular structure %READC-ERR: atom 64 VAL 2HG2 not found in molecular structure %READC-ERR: atom 64 VAL 3HG2 not found in molecular structure %READC-ERR: atom 65 PRO 2HB not found in molecular structure %READC-ERR: atom 65 PRO 3HB not found in molecular structure %READC-ERR: atom 65 PRO 2HG not found in molecular structure %READC-ERR: atom 65 PRO 3HG not found in molecular structure %READC-ERR: atom 65 PRO 2HD not found in molecular structure %READC-ERR: atom 65 PRO 3HD not found in molecular structure %READC-ERR: atom 66 SER H not found in molecular structure %READC-ERR: atom 66 SER 2HB not found in molecular structure %READC-ERR: atom 66 SER 3HB not found in molecular structure %READC-ERR: atom 67 GLU H not found in molecular structure %READC-ERR: atom 67 GLU 2HB not found in molecular structure %READC-ERR: atom 67 GLU 3HB not found in molecular structure %READC-ERR: atom 67 GLU 2HG not found in molecular structure %READC-ERR: atom 67 GLU 3HG not found in molecular structure %READC-ERR: atom 68 LYS H not found in molecular structure %READC-ERR: atom 68 LYS 2HB not found in molecular structure %READC-ERR: atom 68 LYS 3HB not found in molecular structure %READC-ERR: atom 68 LYS 2HG not found in molecular structure %READC-ERR: atom 68 LYS 3HG not found in molecular structure %READC-ERR: atom 68 LYS 2HD not found in molecular structure %READC-ERR: atom 68 LYS 3HD not found in molecular structure %READC-ERR: atom 68 LYS 2HE not found in molecular structure %READC-ERR: atom 68 LYS 3HE not found in molecular structure %READC-ERR: atom 68 LYS 1HZ not found in molecular structure %READC-ERR: atom 68 LYS 2HZ not found in molecular structure %READC-ERR: atom 68 LYS 3HZ not found in molecular structure %READC-ERR: atom 69 GLY H not found in molecular structure %READC-ERR: atom 69 GLY 2HA not found in molecular structure %READC-ERR: atom 69 GLY 3HA not found in molecular structure %READC-ERR: atom 70 GLU H not found in molecular structure %READC-ERR: atom 70 GLU 2HB not found in molecular structure %READC-ERR: atom 70 GLU 3HB not found in molecular structure %READC-ERR: atom 70 GLU 2HG not found in molecular structure %READC-ERR: atom 70 GLU 3HG not found in molecular structure %READC-ERR: atom 71 VAL H not found in molecular structure %READC-ERR: atom 71 VAL 1HG1 not found in molecular structure %READC-ERR: atom 71 VAL 2HG1 not found in molecular structure %READC-ERR: atom 71 VAL 3HG1 not found in molecular structure %READC-ERR: atom 71 VAL 1HG2 not found in molecular structure %READC-ERR: atom 71 VAL 2HG2 not found in molecular structure %READC-ERR: atom 71 VAL 3HG2 not found in molecular structure %READC-ERR: atom 72 HIS H not found in molecular structure %READC-ERR: atom 72 HIS 2HB not found in molecular structure %READC-ERR: atom 72 HIS 3HB not found in molecular structure %READC-ERR: atom 73 GLY H not found in molecular structure %READC-ERR: atom 73 GLY 2HA not found in molecular structure %READC-ERR: atom 73 GLY 3HA not found in molecular structure %READC-ERR: atom 74 LYS H not found in molecular structure %READC-ERR: atom 74 LYS 2HB not found in molecular structure %READC-ERR: atom 74 LYS 3HB not found in molecular structure %READC-ERR: atom 74 LYS 2HG not found in molecular structure %READC-ERR: atom 74 LYS 3HG not found in molecular structure %READC-ERR: atom 74 LYS 2HD not found in molecular structure %READC-ERR: atom 74 LYS 3HD not found in molecular structure %READC-ERR: atom 74 LYS 2HE not found in molecular structure %READC-ERR: atom 74 LYS 3HE not found in molecular structure %READC-ERR: atom 74 LYS 1HZ not found in molecular structure %READC-ERR: atom 74 LYS 2HZ not found in molecular structure %READC-ERR: atom 74 LYS 3HZ not found in molecular structure %READC-ERR: atom 75 VAL H not found in molecular structure %READC-ERR: atom 75 VAL 1HG1 not found in molecular structure %READC-ERR: atom 75 VAL 2HG1 not found in molecular structure %READC-ERR: atom 75 VAL 3HG1 not found in molecular structure %READC-ERR: atom 75 VAL 1HG2 not found in molecular structure %READC-ERR: atom 75 VAL 2HG2 not found in molecular structure %READC-ERR: atom 75 VAL 3HG2 not found in molecular structure %READC-ERR: atom 76 LEU H not found in molecular structure %READC-ERR: atom 76 LEU 2HB not found in molecular structure %READC-ERR: atom 76 LEU 3HB not found in molecular structure %READC-ERR: atom 76 LEU 1HD1 not found in molecular structure %READC-ERR: atom 76 LEU 2HD1 not found in molecular structure %READC-ERR: atom 76 LEU 3HD1 not found in molecular structure %READC-ERR: atom 76 LEU 1HD2 not found in molecular structure %READC-ERR: atom 76 LEU 2HD2 not found in molecular structure %READC-ERR: atom 76 LEU 3HD2 not found in molecular structure %READC-ERR: atom 77 MET H not found in molecular structure %READC-ERR: atom 77 MET 2HB not found in molecular structure %READC-ERR: atom 77 MET 3HB not found in molecular structure %READC-ERR: atom 77 MET 2HG not found in molecular structure %READC-ERR: atom 77 MET 3HG not found in molecular structure %READC-ERR: atom 77 MET 1HE not found in molecular structure %READC-ERR: atom 77 MET 2HE not found in molecular structure %READC-ERR: atom 77 MET 3HE not found in molecular structure %READC-ERR: atom 78 GLY H not found in molecular structure %READC-ERR: atom 78 GLY 2HA not found in molecular structure %READC-ERR: atom 78 GLY 3HA not found in molecular structure %READC-ERR: atom 79 VAL H not found in molecular structure %READC-ERR: atom 79 VAL 1HG1 not found in molecular structure %READC-ERR: atom 79 VAL 2HG1 not found in molecular structure %READC-ERR: atom 79 VAL 3HG1 not found in molecular structure %READC-ERR: atom 79 VAL 1HG2 not found in molecular structure %READC-ERR: atom 79 VAL 2HG2 not found in molecular structure %READC-ERR: atom 79 VAL 3HG2 not found in molecular structure %READC-ERR: atom 80 THR H not found in molecular structure %READC-ERR: atom 80 THR 1HG2 not found in molecular structure %READC-ERR: atom 80 THR 2HG2 not found in molecular structure %READC-ERR: atom 80 THR 3HG2 not found in molecular structure %READC-ERR: atom 81 SER H not found in molecular structure %READC-ERR: atom 81 SER 2HB not found in molecular structure %READC-ERR: atom 81 SER 3HB not found in molecular structure %READC-ERR: atom 82 ASP H not found in molecular structure %READC-ERR: atom 82 ASP 2HB not found in molecular structure %READC-ERR: atom 82 ASP 3HB not found in molecular structure %READC-ERR: atom 83 GLU H not found in molecular structure %READC-ERR: atom 83 GLU 2HB not found in molecular structure %READC-ERR: atom 83 GLU 3HB not found in molecular structure %READC-ERR: atom 83 GLU 2HG not found in molecular structure %READC-ERR: atom 83 GLU 3HG not found in molecular structure %READC-ERR: atom 84 LEU H not found in molecular structure %READC-ERR: atom 84 LEU 2HB not found in molecular structure %READC-ERR: atom 84 LEU 3HB not found in molecular structure %READC-ERR: atom 84 LEU 1HD1 not found in molecular structure %READC-ERR: atom 84 LEU 2HD1 not found in molecular structure %READC-ERR: atom 84 LEU 3HD1 not found in molecular structure %READC-ERR: atom 84 LEU 1HD2 not found in molecular structure %READC-ERR: atom 84 LEU 2HD2 not found in molecular structure %READC-ERR: atom 84 LEU 3HD2 not found in molecular structure %READC-ERR: atom 85 GLU H not found in molecular structure %READC-ERR: atom 85 GLU 2HB not found in molecular structure %READC-ERR: atom 85 GLU 3HB not found in molecular structure %READC-ERR: atom 85 GLU 2HG not found in molecular structure %READC-ERR: atom 85 GLU 3HG not found in molecular structure %READC-ERR: atom 86 ASN H not found in molecular structure %READC-ERR: atom 86 ASN 2HB not found in molecular structure %READC-ERR: atom 86 ASN 3HB not found in molecular structure %READC-ERR: atom 86 ASN 1HD2 not found in molecular structure %READC-ERR: atom 86 ASN 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU H not found in molecular structure %READC-ERR: atom 87 LEU 2HB not found in molecular structure %READC-ERR: atom 87 LEU 3HB not found in molecular structure %READC-ERR: atom 87 LEU 1HD1 not found in molecular structure %READC-ERR: atom 87 LEU 2HD1 not found in molecular structure %READC-ERR: atom 87 LEU 3HD1 not found in molecular structure %READC-ERR: atom 87 LEU 1HD2 not found in molecular structure %READC-ERR: atom 87 LEU 2HD2 not found in molecular structure %READC-ERR: atom 87 LEU 3HD2 not found in molecular structure %READC-ERR: atom 88 ASP H not found in molecular structure %READC-ERR: atom 88 ASP 2HB not found in molecular structure %READC-ERR: atom 88 ASP 3HB not found in molecular structure %READC-ERR: atom 89 ALA H not found in molecular structure %READC-ERR: atom 89 ALA 1HB not found in molecular structure %READC-ERR: atom 89 ALA 2HB not found in molecular structure %READC-ERR: atom 89 ALA 3HB not found in molecular structure %READC-ERR: atom 90 VAL H not found in molecular structure %READC-ERR: atom 90 VAL 1HG1 not found in molecular structure %READC-ERR: atom 90 VAL 2HG1 not found in molecular structure %READC-ERR: atom 90 VAL 3HG1 not found in molecular structure %READC-ERR: atom 90 VAL 1HG2 not found in molecular structure %READC-ERR: atom 90 VAL 2HG2 not found in molecular structure %READC-ERR: atom 90 VAL 3HG2 not found in molecular structure %READC-ERR: atom 91 GLU H not found in molecular structure %READC-ERR: atom 91 GLU 2HB not found in molecular structure %READC-ERR: atom 91 GLU 3HB not found in molecular structure %READC-ERR: atom 91 GLU 2HG not found in molecular structure %READC-ERR: atom 91 GLU 3HG not found in molecular structure %READC-ERR: atom 92 GLY H not found in molecular structure %READC-ERR: atom 92 GLY 2HA not found in molecular structure %READC-ERR: atom 92 GLY 3HA not found in molecular structure %READC-ERR: atom 93 ASN H not found in molecular structure %READC-ERR: atom 93 ASN 2HB not found in molecular structure %READC-ERR: atom 93 ASN 3HB not found in molecular structure %READC-ERR: atom 93 ASN 1HD2 not found in molecular structure %READC-ERR: atom 93 ASN 2HD2 not found in molecular structure %READC-ERR: atom 94 GLU H not found in molecular structure %READC-ERR: atom 94 GLU 2HB not found in molecular structure %READC-ERR: atom 94 GLU 3HB not found in molecular structure %READC-ERR: atom 94 GLU 2HG not found in molecular structure %READC-ERR: atom 94 GLU 3HG not found in molecular structure %READC-ERR: atom 95 TYR H not found in molecular structure %READC-ERR: atom 95 TYR 2HB not found in molecular structure %READC-ERR: atom 95 TYR 3HB not found in molecular structure %READC-ERR: atom 96 GLU H not found in molecular structure %READC-ERR: atom 96 GLU 2HB not found in molecular structure %READC-ERR: atom 96 GLU 3HB not found in molecular structure %READC-ERR: atom 96 GLU 2HG not found in molecular structure %READC-ERR: atom 96 GLU 3HG not found in molecular structure %READC-ERR: atom 97 ARG H not found in molecular structure %READC-ERR: atom 97 ARG 2HB not found in molecular structure %READC-ERR: atom 97 ARG 3HB not found in molecular structure %READC-ERR: atom 97 ARG 2HG not found in molecular structure %READC-ERR: atom 97 ARG 3HG not found in molecular structure %READC-ERR: atom 97 ARG 2HD not found in molecular structure %READC-ERR: atom 97 ARG 3HD not found in molecular structure %READC-ERR: atom 97 ARG 1HH1 not found in molecular structure %READC-ERR: atom 97 ARG 2HH1 not found in molecular structure %READC-ERR: atom 97 ARG 1HH2 not found in molecular structure %READC-ERR: atom 97 ARG 2HH2 not found in molecular structure %READC-ERR: atom 98 VAL H not found in molecular structure %READC-ERR: atom 98 VAL 1HG1 not found in molecular structure %READC-ERR: atom 98 VAL 2HG1 not found in molecular structure %READC-ERR: atom 98 VAL 3HG1 not found in molecular structure %READC-ERR: atom 98 VAL 1HG2 not found in molecular structure %READC-ERR: atom 98 VAL 2HG2 not found in molecular structure %READC-ERR: atom 98 VAL 3HG2 not found in molecular structure %READC-ERR: atom 99 THR H not found in molecular structure %READC-ERR: atom 99 THR 1HG2 not found in molecular structure %READC-ERR: atom 99 THR 2HG2 not found in molecular structure %READC-ERR: atom 99 THR 3HG2 not found in molecular structure %READC-ERR: atom 100 VAL H not found in molecular structure %READC-ERR: atom 100 VAL 1HG1 not found in molecular structure %READC-ERR: atom 100 VAL 2HG1 not found in molecular structure %READC-ERR: atom 100 VAL 3HG1 not found in molecular structure %READC-ERR: atom 100 VAL 1HG2 not found in molecular structure %READC-ERR: atom 100 VAL 2HG2 not found in molecular structure %READC-ERR: atom 100 VAL 3HG2 not found in molecular structure %READC-ERR: atom 101 GLY H not found in molecular structure %READC-ERR: atom 101 GLY 2HA not found in molecular structure %READC-ERR: atom 101 GLY 3HA not found in molecular structure %READC-ERR: atom 102 ILE H not found in molecular structure %READC-ERR: atom 102 ILE 1HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG2 not found in molecular structure %READC-ERR: atom 102 ILE 3HG2 not found in molecular structure %READC-ERR: atom 102 ILE 2HG1 not found in molecular structure %READC-ERR: atom 102 ILE 3HG1 not found in molecular structure %READC-ERR: atom 102 ILE 1HD1 not found in molecular structure %READC-ERR: atom 102 ILE 2HD1 not found in molecular structure %READC-ERR: atom 102 ILE 3HD1 not found in molecular structure %READC-ERR: atom 103 VAL H not found in molecular structure %READC-ERR: atom 103 VAL 1HG1 not found in molecular structure %READC-ERR: atom 103 VAL 2HG1 not found in molecular structure %READC-ERR: atom 103 VAL 3HG1 not found in molecular structure %READC-ERR: atom 103 VAL 1HG2 not found in molecular structure %READC-ERR: atom 103 VAL 2HG2 not found in molecular structure %READC-ERR: atom 103 VAL 3HG2 not found in molecular structure %READC-ERR: atom 104 ARG H not found in molecular structure %READC-ERR: atom 104 ARG 2HB not found in molecular structure %READC-ERR: atom 104 ARG 3HB not found in molecular structure %READC-ERR: atom 104 ARG 2HG not found in molecular structure %READC-ERR: atom 104 ARG 3HG not found in molecular structure %READC-ERR: atom 104 ARG 2HD not found in molecular structure %READC-ERR: atom 104 ARG 3HD not found in molecular structure %READC-ERR: atom 104 ARG 1HH1 not found in molecular structure %READC-ERR: atom 104 ARG 2HH1 not found in molecular structure %READC-ERR: atom 104 ARG 1HH2 not found in molecular structure %READC-ERR: atom 104 ARG 2HH2 not found in molecular structure %READC-ERR: atom 105 GLU H not found in molecular structure %READC-ERR: atom 105 GLU 2HB not found in molecular structure %READC-ERR: atom 105 GLU 3HB not found in molecular structure %READC-ERR: atom 105 GLU 2HG not found in molecular structure %READC-ERR: atom 105 GLU 3HG not found in molecular structure %READC-ERR: atom 106 ASP H not found in molecular structure %READC-ERR: atom 106 ASP 2HB not found in molecular structure %READC-ERR: atom 106 ASP 3HB not found in molecular structure %READC-ERR: atom 107 ASN H not found in molecular structure %READC-ERR: atom 107 ASN 2HB not found in molecular structure %READC-ERR: atom 107 ASN 3HB not found in molecular structure %READC-ERR: atom 107 ASN 1HD2 not found in molecular structure %READC-ERR: atom 107 ASN 2HD2 not found in molecular structure %READC-ERR: atom 108 SER H not found in molecular structure %READC-ERR: atom 108 SER 2HB not found in molecular structure %READC-ERR: atom 108 SER 3HB not found in molecular structure %READC-ERR: atom 109 GLU H not found in molecular structure %READC-ERR: atom 109 GLU 2HB not found in molecular structure %READC-ERR: atom 109 GLU 3HB not found in molecular structure %READC-ERR: atom 109 GLU 2HG not found in molecular structure %READC-ERR: atom 109 GLU 3HG not found in molecular structure %READC-ERR: atom 110 LYS H not found in molecular structure %READC-ERR: atom 110 LYS 2HB not found in molecular structure %READC-ERR: atom 110 LYS 3HB not found in molecular structure %READC-ERR: atom 110 LYS 2HG not found in molecular structure %READC-ERR: atom 110 LYS 3HG not found in molecular structure %READC-ERR: atom 110 LYS 2HD not found in molecular structure %READC-ERR: atom 110 LYS 3HD not found in molecular structure %READC-ERR: atom 110 LYS 2HE not found in molecular structure %READC-ERR: atom 110 LYS 3HE not found in molecular structure %READC-ERR: atom 110 LYS 1HZ not found in molecular structure %READC-ERR: atom 110 LYS 2HZ not found in molecular structure %READC-ERR: atom 110 LYS 3HZ not found in molecular structure %READC-ERR: atom 111 MET H not found in molecular structure %READC-ERR: atom 111 MET 2HB not found in molecular structure %READC-ERR: atom 111 MET 3HB not found in molecular structure %READC-ERR: atom 111 MET 2HG not found in molecular structure %READC-ERR: atom 111 MET 3HG not found in molecular structure %READC-ERR: atom 111 MET 1HE not found in molecular structure %READC-ERR: atom 111 MET 2HE not found in molecular structure %READC-ERR: atom 111 MET 3HE not found in molecular structure %READC-ERR: atom 112 ALA H not found in molecular structure %READC-ERR: atom 112 ALA 1HB not found in molecular structure %READC-ERR: atom 112 ALA 2HB not found in molecular structure %READC-ERR: atom 112 ALA 3HB not found in molecular structure %READC-ERR: atom 113 VAL H not found in molecular structure %READC-ERR: atom 113 VAL 1HG1 not found in molecular structure %READC-ERR: atom 113 VAL 2HG1 not found in molecular structure %READC-ERR: atom 113 VAL 3HG1 not found in molecular structure %READC-ERR: atom 113 VAL 1HG2 not found in molecular structure %READC-ERR: atom 113 VAL 2HG2 not found in molecular structure %READC-ERR: atom 113 VAL 3HG2 not found in molecular structure %READC-ERR: atom 114 LYS H not found in molecular structure %READC-ERR: atom 114 LYS 2HB not found in molecular structure %READC-ERR: atom 114 LYS 3HB not found in molecular structure %READC-ERR: atom 114 LYS 2HG not found in molecular structure %READC-ERR: atom 114 LYS 3HG not found in molecular structure %READC-ERR: atom 114 LYS 2HD not found in molecular structure %READC-ERR: atom 114 LYS 3HD not found in molecular structure %READC-ERR: atom 114 LYS 2HE not found in molecular structure %READC-ERR: atom 114 LYS 3HE not found in molecular structure %READC-ERR: atom 114 LYS 1HZ not found in molecular structure %READC-ERR: atom 114 LYS 2HZ not found in molecular structure %READC-ERR: atom 114 LYS 3HZ not found in molecular structure %READC-ERR: atom 115 THR H not found in molecular structure %READC-ERR: atom 115 THR 1HG2 not found in molecular structure %READC-ERR: atom 115 THR 2HG2 not found in molecular structure %READC-ERR: atom 115 THR 3HG2 not found in molecular structure %READC-ERR: atom 116 TYR H not found in molecular structure %READC-ERR: atom 116 TYR 2HB not found in molecular structure %READC-ERR: atom 116 TYR 3HB not found in molecular structure %READC-ERR: atom 117 MET H not found in molecular structure %READC-ERR: atom 117 MET 2HB not found in molecular structure %READC-ERR: atom 117 MET 3HB not found in molecular structure %READC-ERR: atom 117 MET 2HG not found in molecular structure %READC-ERR: atom 117 MET 3HG not found in molecular structure %READC-ERR: atom 117 MET 1HE not found in molecular structure %READC-ERR: atom 117 MET 2HE not found in molecular structure %READC-ERR: atom 117 MET 3HE not found in molecular structure %READC-ERR: atom 118 TRP H not found in molecular structure %READC-ERR: atom 118 TRP 2HB not found in molecular structure %READC-ERR: atom 118 TRP 3HB not found in molecular structure %READC-ERR: atom 119 ILE H not found in molecular structure %READC-ERR: atom 119 ILE 1HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG2 not found in molecular structure %READC-ERR: atom 119 ILE 3HG2 not found in molecular structure %READC-ERR: atom 119 ILE 2HG1 not found in molecular structure %READC-ERR: atom 119 ILE 3HG1 not found in molecular structure %READC-ERR: atom 119 ILE 1HD1 not found in molecular structure %READC-ERR: atom 119 ILE 2HD1 not found in molecular structure %READC-ERR: atom 119 ILE 3HD1 not found in molecular structure %READC-ERR: atom 120 ASN H not found in molecular structure %READC-ERR: atom 120 ASN 2HB not found in molecular structure %READC-ERR: atom 120 ASN 3HB not found in molecular structure %READC-ERR: atom 120 ASN 1HD2 not found in molecular structure %READC-ERR: atom 120 ASN 2HD2 not found in molecular structure %READC-ERR: atom 121 LYS H not found in molecular structure %READC-ERR: atom 121 LYS 2HB not found in molecular structure %READC-ERR: atom 121 LYS 3HB not found in molecular structure %READC-ERR: atom 121 LYS 2HG not found in molecular structure %READC-ERR: atom 121 LYS 3HG not found in molecular structure %READC-ERR: atom 121 LYS 2HD not found in molecular structure %READC-ERR: atom 121 LYS 3HD not found in molecular structure %READC-ERR: atom 121 LYS 2HE not found in molecular structure %READC-ERR: atom 121 LYS 3HE not found in molecular structure %READC-ERR: atom 121 LYS 1HZ not found in molecular structure %READC-ERR: atom 121 LYS 2HZ not found in molecular structure %READC-ERR: atom 121 LYS 3HZ not found in molecular structure %READC-ERR: atom 122 ALA H not found in molecular structure %READC-ERR: atom 122 ALA 1HB not found in molecular structure %READC-ERR: atom 122 ALA 2HB not found in molecular structure %READC-ERR: atom 122 ALA 3HB not found in molecular structure %READC-ERR: atom 123 ASP H not found in molecular structure %READC-ERR: atom 123 ASP 2HB not found in molecular structure %READC-ERR: atom 123 ASP 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HB not found in molecular structure %READC-ERR: atom 124 PRO 3HB not found in molecular structure %READC-ERR: atom 124 PRO 2HG not found in molecular structure %READC-ERR: atom 124 PRO 3HG not found in molecular structure %READC-ERR: atom 124 PRO 2HD not found in molecular structure %READC-ERR: atom 124 PRO 3HD not found in molecular structure %READC-ERR: atom 125 ASP H not found in molecular structure %READC-ERR: atom 125 ASP 2HB not found in molecular structure %READC-ERR: atom 125 ASP 3HB not found in molecular structure %READC-ERR: atom 126 MET H not found in molecular structure %READC-ERR: atom 126 MET 2HB not found in molecular structure %READC-ERR: atom 126 MET 3HB not found in molecular structure %READC-ERR: atom 126 MET 2HG not found in molecular structure %READC-ERR: atom 126 MET 3HG not found in molecular structure %READC-ERR: atom 126 MET 1HE not found in molecular structure %READC-ERR: atom 126 MET 2HE not found in molecular structure %READC-ERR: atom 126 MET 3HE not found in molecular structure %READC-ERR: atom 127 PHE H not found in molecular structure %READC-ERR: atom 127 PHE 2HB not found in molecular structure %READC-ERR: atom 127 PHE 3HB not found in molecular structure %READC-ERR: atom 128 GLY H not found in molecular structure %READC-ERR: atom 128 GLY 2HA not found in molecular structure %READC-ERR: atom 128 GLY 3HA not found in molecular structure %READC-ERR: atom 129 GLU H not found in molecular structure %READC-ERR: atom 129 GLU 2HB not found in molecular structure %READC-ERR: atom 129 GLU 3HB not found in molecular structure %READC-ERR: atom 129 GLU 2HG not found in molecular structure %READC-ERR: atom 129 GLU 3HG not found in molecular structure %READC-ERR: atom 130 TRP H not found in molecular structure %READC-ERR: atom 130 TRP 2HB not found in molecular structure %READC-ERR: atom 130 TRP 3HB not found in molecular structure %READC-ERR: atom 131 ASN H not found in molecular structure %READC-ERR: atom 131 ASN 2HB not found in molecular structure %READC-ERR: atom 131 ASN 3HB not found in molecular structure %READC-ERR: atom 131 ASN 1HD2 not found in molecular structure %READC-ERR: atom 131 ASN 2HD2 not found in molecular structure %READC-ERR: atom 132 PHE H not found in molecular structure %READC-ERR: atom 132 PHE 2HB not found in molecular structure %READC-ERR: atom 132 PHE 3HB not found in molecular structure %READC-ERR: atom 133 GLU H not found in molecular structure %READC-ERR: atom 133 GLU 2HB not found in molecular structure %READC-ERR: atom 133 GLU 3HB not found in molecular structure %READC-ERR: atom 133 GLU 2HG not found in molecular structure %READC-ERR: atom 133 GLU 3HG not found in molecular structure %READC-ERR: atom 134 GLU H not found in molecular structure %READC-ERR: atom 134 GLU 2HB not found in molecular structure %READC-ERR: atom 134 GLU 3HB not found in molecular structure %READC-ERR: atom 134 GLU 2HG not found in molecular structure %READC-ERR: atom 134 GLU 3HG not found in molecular structure %READC-ERR: atom 135 TRP H not found in molecular structure %READC-ERR: atom 135 TRP 2HB not found in molecular structure %READC-ERR: atom 135 TRP 3HB not found in molecular structure %READC-ERR: atom 136 LYS H not found in molecular structure %READC-ERR: atom 136 LYS 2HB not found in molecular structure %READC-ERR: atom 136 LYS 3HB not found in molecular structure %READC-ERR: atom 136 LYS 2HG not found in molecular structure %READC-ERR: atom 136 LYS 3HG not found in molecular structure %READC-ERR: atom 136 LYS 2HD not found in molecular structure %READC-ERR: atom 136 LYS 3HD not found in molecular structure %READC-ERR: atom 136 LYS 2HE not found in molecular structure %READC-ERR: atom 136 LYS 3HE not found in molecular structure %READC-ERR: atom 136 LYS 1HZ not found in molecular structure %READC-ERR: atom 136 LYS 2HZ not found in molecular structure %READC-ERR: atom 136 LYS 3HZ not found in molecular structure %READC-ERR: atom 137 ARG H not found in molecular structure %READC-ERR: atom 137 ARG 2HB not found in molecular structure %READC-ERR: atom 137 ARG 3HB not found in molecular structure %READC-ERR: atom 137 ARG 2HG not found in molecular structure %READC-ERR: atom 137 ARG 3HG not found in molecular structure %READC-ERR: atom 137 ARG 2HD not found in molecular structure %READC-ERR: atom 137 ARG 3HD not found in molecular structure %READC-ERR: atom 137 ARG 1HH1 not found in molecular structure %READC-ERR: atom 137 ARG 2HH1 not found in molecular structure %READC-ERR: atom 137 ARG 1HH2 not found in molecular structure %READC-ERR: atom 137 ARG 2HH2 not found in molecular structure %READC-ERR: atom 138 LEU H not found in molecular structure %READC-ERR: atom 138 LEU 2HB not found in molecular structure %READC-ERR: atom 138 LEU 3HB not found in molecular structure %READC-ERR: atom 138 LEU 1HD1 not found in molecular structure %READC-ERR: atom 138 LEU 2HD1 not found in molecular structure %READC-ERR: atom 138 LEU 3HD1 not found in molecular structure %READC-ERR: atom 138 LEU 1HD2 not found in molecular structure %READC-ERR: atom 138 LEU 2HD2 not found in molecular structure %READC-ERR: atom 138 LEU 3HD2 not found in molecular structure %READC-ERR: atom 139 HIS H not found in molecular structure %READC-ERR: atom 139 HIS 2HB not found in molecular structure %READC-ERR: atom 139 HIS 3HB not found in molecular structure %READC-ERR: atom 140 LYS H not found in molecular structure %READC-ERR: atom 140 LYS 2HB not found in molecular structure %READC-ERR: atom 140 LYS 3HB not found in molecular structure %READC-ERR: atom 140 LYS 2HG not found in molecular structure %READC-ERR: atom 140 LYS 3HG not found in molecular structure %READC-ERR: atom 140 LYS 2HD not found in molecular structure %READC-ERR: atom 140 LYS 3HD not found in molecular structure %READC-ERR: atom 140 LYS 2HE not found in molecular structure %READC-ERR: atom 140 LYS 3HE not found in molecular structure %READC-ERR: atom 140 LYS 1HZ not found in molecular structure %READC-ERR: atom 140 LYS 2HZ not found in molecular structure %READC-ERR: atom 140 LYS 3HZ not found in molecular structure %READC-ERR: atom 141 LYS H not found in molecular structure %READC-ERR: atom 141 LYS 2HB not found in molecular structure %READC-ERR: atom 141 LYS 3HB not found in molecular structure %READC-ERR: atom 141 LYS 2HG not found in molecular structure %READC-ERR: atom 141 LYS 3HG not found in molecular structure %READC-ERR: atom 141 LYS 2HD not found in molecular structure %READC-ERR: atom 141 LYS 3HD not found in molecular structure %READC-ERR: atom 141 LYS 2HE not found in molecular structure %READC-ERR: atom 141 LYS 3HE not found in molecular structure %READC-ERR: atom 141 LYS 1HZ not found in molecular structure %READC-ERR: atom 141 LYS 2HZ not found in molecular structure %READC-ERR: atom 141 LYS 3HZ not found in molecular structure %READC-ERR: atom 142 LYS H not found in molecular structure %READC-ERR: atom 142 LYS 2HB not found in molecular structure %READC-ERR: atom 142 LYS 3HB not found in molecular structure %READC-ERR: atom 142 LYS 2HG not found in molecular structure %READC-ERR: atom 142 LYS 3HG not found in molecular structure %READC-ERR: atom 142 LYS 2HD not found in molecular structure %READC-ERR: atom 142 LYS 3HD not found in molecular structure %READC-ERR: atom 142 LYS 2HE not found in molecular structure %READC-ERR: atom 142 LYS 3HE not found in molecular structure %READC-ERR: atom 142 LYS 1HZ not found in molecular structure %READC-ERR: atom 142 LYS 2HZ not found in molecular structure %READC-ERR: atom 142 LYS 3HZ not found in molecular structure %READC-ERR: atom 143 PHE H not found in molecular structure %READC-ERR: atom 143 PHE 2HB not found in molecular structure %READC-ERR: atom 143 PHE 3HB not found in molecular structure %READC-ERR: atom 144 ILE H not found in molecular structure %READC-ERR: atom 144 ILE 1HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG2 not found in molecular structure %READC-ERR: atom 144 ILE 3HG2 not found in molecular structure %READC-ERR: atom 144 ILE 2HG1 not found in molecular structure %READC-ERR: atom 144 ILE 3HG1 not found in molecular structure %READC-ERR: atom 144 ILE 1HD1 not found in molecular structure %READC-ERR: atom 144 ILE 2HD1 not found in molecular structure %READC-ERR: atom 144 ILE 3HD1 not found in molecular structure %READC-ERR: atom 145 GLU H not found in molecular structure %READC-ERR: atom 145 GLU 2HB not found in molecular structure %READC-ERR: atom 145 GLU 3HB not found in molecular structure %READC-ERR: atom 145 GLU 2HG not found in molecular structure %READC-ERR: atom 145 GLU 3HG not found in molecular structure %READC-ERR: atom 146 THR H not found in molecular structure %READC-ERR: atom 146 THR 1HG2 not found in molecular structure %READC-ERR: atom 146 THR 2HG2 not found in molecular structure %READC-ERR: atom 146 THR 3HG2 not found in molecular structure %READC-ERR: atom 147 PHE H not found in molecular structure %READC-ERR: atom 147 PHE 2HB not found in molecular structure %READC-ERR: atom 147 PHE 3HB not found in molecular structure %READC-ERR: atom 148 LYS H not found in molecular structure %READC-ERR: atom 148 LYS 2HB not found in molecular structure %READC-ERR: atom 148 LYS 3HB not found in molecular structure %READC-ERR: atom 148 LYS 2HG not found in molecular structure %READC-ERR: atom 148 LYS 3HG not found in molecular structure %READC-ERR: atom 148 LYS 2HD not found in molecular structure %READC-ERR: atom 148 LYS 3HD not found in molecular structure %READC-ERR: atom 148 LYS 2HE not found in molecular structure %READC-ERR: atom 148 LYS 3HE not found in molecular structure %READC-ERR: atom 148 LYS 1HZ not found in molecular structure %READC-ERR: atom 148 LYS 2HZ not found in molecular structure %READC-ERR: atom 148 LYS 3HZ not found in molecular structure %READC-ERR: atom 149 LYS H not found in molecular structure %READC-ERR: atom 149 LYS 2HB not found in molecular structure %READC-ERR: atom 149 LYS 3HB not found in molecular structure %READC-ERR: atom 149 LYS 2HG not found in molecular structure %READC-ERR: atom 149 LYS 3HG not found in molecular structure %READC-ERR: atom 149 LYS 2HD not found in molecular structure %READC-ERR: atom 149 LYS 3HD not found in molecular structure %READC-ERR: atom 149 LYS 2HE not found in molecular structure %READC-ERR: atom 149 LYS 3HE not found in molecular structure %READC-ERR: atom 149 LYS 1HZ not found in molecular structure %READC-ERR: atom 149 LYS 2HZ not found in molecular structure %READC-ERR: atom 149 LYS 3HZ not found in molecular structure %READC-ERR: atom 150 ILE H not found in molecular structure %READC-ERR: atom 150 ILE 1HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG2 not found in molecular structure %READC-ERR: atom 150 ILE 3HG2 not found in molecular structure %READC-ERR: atom 150 ILE 2HG1 not found in molecular structure %READC-ERR: atom 150 ILE 3HG1 not found in molecular structure %READC-ERR: atom 150 ILE 1HD1 not found in molecular structure %READC-ERR: atom 150 ILE 2HD1 not found in molecular structure %READC-ERR: atom 150 ILE 3HD1 not found in molecular structure %READC-ERR: atom 151 MET H not found in molecular structure %READC-ERR: atom 151 MET 2HB not found in molecular structure %READC-ERR: atom 151 MET 3HB not found in molecular structure %READC-ERR: atom 151 MET 2HG not found in molecular structure %READC-ERR: atom 151 MET 3HG not found in molecular structure %READC-ERR: atom 151 MET 1HE not found in molecular structure %READC-ERR: atom 151 MET 2HE not found in molecular structure %READC-ERR: atom 151 MET 3HE not found in molecular structure %READC-ERR: atom 152 GLU H not found in molecular structure %READC-ERR: atom 152 GLU 2HB not found in molecular structure %READC-ERR: atom 152 GLU 3HB not found in molecular structure %READC-ERR: atom 152 GLU 2HG not found in molecular structure %READC-ERR: atom 152 GLU 3HG not found in molecular structure %READC-ERR: atom 153 CYS H not found in molecular structure %READC-ERR: atom 153 CYS 2HB not found in molecular structure %READC-ERR: atom 153 CYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS H not found in molecular structure %READC-ERR: atom 154 LYS 2HB not found in molecular structure %READC-ERR: atom 154 LYS 3HB not found in molecular structure %READC-ERR: atom 154 LYS 2HG not found in molecular structure %READC-ERR: atom 154 LYS 3HG not found in molecular structure %READC-ERR: atom 154 LYS 2HD not found in molecular structure %READC-ERR: atom 154 LYS 3HD not found in molecular structure %READC-ERR: atom 154 LYS 2HE not found in molecular structure %READC-ERR: atom 154 LYS 3HE not found in molecular structure %READC-ERR: atom 154 LYS 1HZ not found in molecular structure %READC-ERR: atom 154 LYS 2HZ not found in molecular structure %READC-ERR: atom 154 LYS 3HZ not found in molecular structure %READC-ERR: atom 155 LYS H not found in molecular structure %READC-ERR: atom 155 LYS 2HB not found in molecular structure %READC-ERR: atom 155 LYS 3HB not found in molecular structure %READC-ERR: atom 155 LYS 2HG not found in molecular structure %READC-ERR: atom 155 LYS 3HG not found in molecular structure %READC-ERR: atom 155 LYS 2HD not found in molecular structure %READC-ERR: atom 155 LYS 3HD not found in molecular structure %READC-ERR: atom 155 LYS 2HE not found in molecular structure %READC-ERR: atom 155 LYS 3HE not found in molecular structure %READC-ERR: atom 155 LYS 1HZ not found in molecular structure %READC-ERR: atom 155 LYS 2HZ not found in molecular structure %READC-ERR: atom 155 LYS 3HZ not found in molecular structure %READC-ERR: atom 156 LYS H not found in molecular structure %READC-ERR: atom 156 LYS 2HB not found in molecular structure %READC-ERR: atom 156 LYS 3HB not found in molecular structure %READC-ERR: atom 156 LYS 2HG not found in molecular structure %READC-ERR: atom 156 LYS 3HG not found in molecular structure %READC-ERR: atom 156 LYS 2HD not found in molecular structure %READC-ERR: atom 156 LYS 3HD not found in molecular structure %READC-ERR: atom 156 LYS 2HE not found in molecular structure %READC-ERR: atom 156 LYS 3HE not found in molecular structure %READC-ERR: atom 156 LYS 1HZ not found in molecular structure %READC-ERR: atom 156 LYS 2HZ not found in molecular structure %READC-ERR: atom 156 LYS 3HZ not found in molecular structure %READC-ERR: atom 157 PRO 2HB not found in molecular structure %READC-ERR: atom 157 PRO 3HB not found in molecular structure %READC-ERR: atom 157 PRO 2HG not found in molecular structure %READC-ERR: atom 157 PRO 3HG not found in molecular structure %READC-ERR: atom 157 PRO 2HD not found in molecular structure %READC-ERR: atom 157 PRO 3HD not found in molecular structure %READC-ERR: atom 158 GLN H not found in molecular structure %READC-ERR: atom 158 GLN 2HB not found in molecular structure %READC-ERR: atom 158 GLN 3HB not found in molecular structure %READC-ERR: atom 158 GLN 2HG not found in molecular structure %READC-ERR: atom 158 GLN 3HG not found in molecular structure %READC-ERR: atom 158 GLN 1HE2 not found in molecular structure %READC-ERR: atom 158 GLN 2HE2 not found in molecular structure %READC-ERR: atom 159 GLY H not found in molecular structure %READC-ERR: atom 159 GLY 2HA not found in molecular structure %READC-ERR: atom 159 GLY 3HA not found in molecular structure %READC-ERR: atom 160 GLN H not found in molecular structure %READC-ERR: atom 160 GLN 2HB not found in molecular structure %READC-ERR: atom 160 GLN 3HB not found in molecular structure %READC-ERR: atom 160 GLN 2HG not found in molecular structure %READC-ERR: atom 160 GLN 3HG not found in molecular structure %READC-ERR: atom 160 GLN 1HE2 not found in molecular structure %READC-ERR: atom 160 GLN 2HE2 not found in molecular structure %READC-ERR: atom 161 GLY H not found in molecular structure %READC-ERR: atom 161 GLY 2HA not found in molecular structure %READC-ERR: atom 161 GLY 3HA not found in molecular structure %READC-ERR: atom 162 ASN H not found in molecular structure %READC-ERR: atom 162 ASN 2HB not found in molecular structure %READC-ERR: atom 162 ASN 3HB not found in molecular structure %READC-ERR: atom 162 ASN 1HD2 not found in molecular structure %READC-ERR: atom 162 ASN 2HD2 not found in molecular structure %READC-ERR: atom 163 ASP H not found in molecular structure %READC-ERR: atom 163 ASP 2HB not found in molecular structure %READC-ERR: atom 163 ASP 3HB not found in molecular structure %READC-ERR: atom 164 ASP H not found in molecular structure %READC-ERR: atom 164 ASP 2HB not found in molecular structure %READC-ERR: atom 164 ASP 3HB not found in molecular structure %READC-ERR: atom 165 ILE H not found in molecular structure %READC-ERR: atom 165 ILE 1HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG2 not found in molecular structure %READC-ERR: atom 165 ILE 3HG2 not found in molecular structure %READC-ERR: atom 165 ILE 2HG1 not found in molecular structure %READC-ERR: atom 165 ILE 3HG1 not found in molecular structure %READC-ERR: atom 165 ILE 1HD1 not found in molecular structure %READC-ERR: atom 165 ILE 2HD1 not found in molecular structure %READC-ERR: atom 165 ILE 3HD1 not found in molecular structure %READC-ERR: atom 166 SER H not found in molecular structure %READC-ERR: atom 166 SER 2HB not found in molecular structure %READC-ERR: atom 166 SER 3HB not found in molecular structure %READC-ERR: atom 167 HIS H not found in molecular structure %READC-ERR: atom 167 HIS 2HB not found in molecular structure %READC-ERR: atom 167 HIS 3HB not found in molecular structure %READC-ERR: atom 168 VAL H not found in molecular structure %READC-ERR: atom 168 VAL 1HG1 not found in molecular structure %READC-ERR: atom 168 VAL 2HG1 not found in molecular structure %READC-ERR: atom 168 VAL 3HG1 not found in molecular structure %READC-ERR: atom 168 VAL 1HG2 not found in molecular structure %READC-ERR: atom 168 VAL 2HG2 not found in molecular structure %READC-ERR: atom 168 VAL 3HG2 not found in molecular structure %READC-ERR: atom 169 LEU H not found in molecular structure %READC-ERR: atom 169 LEU 2HB not found in molecular structure %READC-ERR: atom 169 LEU 3HB not found in molecular structure %READC-ERR: atom 169 LEU 1HD1 not found in molecular structure %READC-ERR: atom 169 LEU 2HD1 not found in molecular structure %READC-ERR: atom 169 LEU 3HD1 not found in molecular structure %READC-ERR: atom 169 LEU 1HD2 not found in molecular structure %READC-ERR: atom 169 LEU 2HD2 not found in molecular structure %READC-ERR: atom 169 LEU 3HD2 not found in molecular structure %READC-ERR: atom 170 ARG H not found in molecular structure %READC-ERR: atom 170 ARG 2HB not found in molecular structure %READC-ERR: atom 170 ARG 3HB not found in molecular structure %READC-ERR: atom 170 ARG 2HG not found in molecular structure %READC-ERR: atom 170 ARG 3HG not found in molecular structure %READC-ERR: atom 170 ARG 2HD not found in molecular structure %READC-ERR: atom 170 ARG 3HD not found in molecular structure %READC-ERR: atom 170 ARG 1HH1 not found in molecular structure %READC-ERR: atom 170 ARG 2HH1 not found in molecular structure %READC-ERR: atom 170 ARG 1HH2 not found in molecular structure %READC-ERR: atom 170 ARG 2HH2 not found in molecular structure %READC-ERR: atom 171 GLU H not found in molecular structure %READC-ERR: atom 171 GLU 2HB not found in molecular structure %READC-ERR: atom 171 GLU 3HB not found in molecular structure %READC-ERR: atom 171 GLU 2HG not found in molecular structure %READC-ERR: atom 171 GLU 3HG not found in molecular structure %READC-ERR: atom 172 ASP H not found in molecular structure %READC-ERR: atom 172 ASP 2HB not found in molecular structure %READC-ERR: atom 172 ASP 3HB not found in molecular structure %READC-ERR: atom 173 GLN H not found in molecular structure %READC-ERR: atom 173 GLN 2HB not found in molecular structure %READC-ERR: atom 173 GLN 3HB not found in molecular structure %READC-ERR: atom 173 GLN 2HG not found in molecular structure %READC-ERR: atom 173 GLN 3HG not found in molecular structure %READC-ERR: atom 173 GLN 1HE2 not found in molecular structure %READC-ERR: atom 173 GLN 2HE2 not found in molecular structure %READC-ERR: atom 173 GLN O not found in molecular structure COOR>END CNSsolve>parameter @TOPPAR:parallhdg5.3.pro end PARRDR>! JFD adds FES complex parameters from Milo Westler's calculations PARRDR>! and standard topology. PARRDR> PARRDR>remark file protein-allhdg-ucl.param version UCL date 07-JUL-01 PARRDR>remark for file protein-allhdg-ucl.top version UCL date 14-MAR-00 PARRDR>remark for file protein-allhdg-dih-ucl.top version UCL date 07-JUL-01 PARRDR>remark Geometric energy function parameters for distance geometry and PARRDR>remark simulated annealing. PARRDR>remark Original author: Michael Nilges, EMBL Heidelberg PARRDR>remark Modifications: Mark A. Williams, UCL London PARRDR> PARRDR>set echo off message off end SHOW: sum over selected elements = 2.000000 CNSsolve> CNSsolve> if ( $log_level = verbose ) then CNSsolve> set message=normal echo=on end CNSsolve> else CNSsolve> set message=off echo=off end CNSsolve> end if CNSsolve> CNSsolve> CNSsolve> identity (store1) (none) SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> identity (store1) (&atom_build) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> identity (store1) (store1 or hydrogen) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($tobuild=$result) EVALUATE: symbol $TOBUILD set to 1383.00 (real) CNSsolve> CNSsolve> !evaluate ($tobuild=0) CNSsolve> CNSsolve> if ( $tobuild > 0 ) then NEXTCD: condition evaluated as true CNSsolve> CNSsolve> fix selection=(not(store1)) end SELRPN: 1411 atoms have been selected out of 2794 CNSsolve> CNSsolve> show sum(1) (store1) SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 CNSsolve> evaluate ($moving=$result) EVALUATE: symbol $MOVING set to 1383.00 (real) CNSsolve> CNSsolve> if ( $moving > 0 ) then NEXTCD: condition evaluated as true CNSsolve> for $id in id (tag and byres(store1)) loop avco SELRPN: 173 atoms have been selected out of 2794 FOR ID LOOP: symbol ID set to 1.00000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 2.694500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.69450 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -0.353500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.353500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -0.577500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.577500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 10.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 7.236571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.23657 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -2.243500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.24350 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -2.772786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.77279 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 28.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 5.303714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.30371 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 3.553357 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.55336 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -1.812786 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.81279 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 46.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 7.102143 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.10214 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 4.547000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.54700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 3.830500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.83050 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 64.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 12.266571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.2666 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 4.712286 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.71229 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 2.605857 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.60586 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 82.0000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 12.846714 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.8467 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 8.886143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.88614 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -1.204000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.20400 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 100.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 18.471214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.4712 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 9.224143 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.22414 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 0.899071 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 0.899071 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 118.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 18.828700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.8287 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.753200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.75320 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.456900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -1.45690 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 137.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 22.398600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.3986 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.575700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.57570 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.261300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.26130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 152.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 24.934125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.9341 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 2.752000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.75200 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.712125 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.71213 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 163.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 27.893625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.8936 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 3.236875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.23688 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -8.702750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.70275 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 174.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 25.938500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.9385 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 1.823000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.82300 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -12.046375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.0464 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 185.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 30.011556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.0116 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 2.832778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.83278 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.938111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.9381 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 197.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 27.292625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.2926 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 1.934000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.93400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -17.412375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.4124 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 208.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 30.571400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.5714 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 4.536300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.53630 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -20.230300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.2303 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 227.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 30.534700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.5347 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.329100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.329100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.374300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.3743 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 244.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 27.301300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 27.3013 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.712600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.71260 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -20.063700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.0637 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 263.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 23.959786 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.9598 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -2.706571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.70657 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -23.578929 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.5789 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 281.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 19.782333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.7823 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -2.367222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.36722 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.826778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.8268 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 295.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 17.401778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.4018 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.463778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.46378 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -20.381778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.3818 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 311.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 11.558176 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.5582 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -6.237294 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.23729 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -17.508529 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.5085 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 331.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 13.206333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.2063 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.204667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.2047 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.293778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.2938 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 347.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 9.608611 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.60861 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -12.720722 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.7207 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -18.878222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.8782 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 368.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 11.151750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.1518 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -15.447500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.4475 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -15.879500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.8795 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 375.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 12.989125 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.9891 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -17.001375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.0014 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -18.896375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.8964 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 386.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 16.295235 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.2952 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -15.456471 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.4565 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -19.288294 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.2883 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 406.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 13.634200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.6342 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.212700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.2127 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.362700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.3627 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 423.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 17.252556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.2526 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -16.243889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.2439 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.137333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.1373 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 435.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 20.748625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.7486 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -15.040750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.0408 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -11.431250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.4313 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 449.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 21.547111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.5471 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.657222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.6572 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.421222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.4212 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 461.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 19.871778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.8718 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.173556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.1736 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.600222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.6002 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 477.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 22.273200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 22.2732 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.465200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.4652 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.258300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.2583 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 496.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 26.044556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.0446 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.356333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.3563 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.158556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.1586 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 510.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 24.901444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.9014 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.100889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.1009 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.202667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.2027 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 526.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 23.351000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.3510 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.891222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.8912 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -20.803000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.8030 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 543.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 26.816700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.8167 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.982300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.9823 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -19.881800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.8818 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 562.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 30.227111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.2271 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.180556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.1806 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.314000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.3140 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 574.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 30.708692 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 30.7087 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -12.947692 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.9477 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -14.114923 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.1149 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 598.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 25.120000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.1200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.509700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.5097 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.244300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.2443 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 612.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 24.279625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 24.2796 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -8.801875 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.80187 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -14.515250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.5153 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 626.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 23.893100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.8931 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.240400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.24040 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.588400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.5884 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 641.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 19.472000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.4720 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.426800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.42680 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.841900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.8419 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 660.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 17.356778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 17.3568 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.218667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.21867 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -10.667000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.6670 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 676.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 13.496500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.4965 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -3.515625 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.51563 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -8.933000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.93300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 687.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 11.534667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.5347 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -2.175333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.17533 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -12.413833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.4138 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 697.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.713100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.71310 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.197800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.19780 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.308700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.3087 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 711.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.058500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.05850 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.422100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.42210 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.526100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.5261 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 730.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 4.550000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.55000 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 0.436125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.436125 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -18.034750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.0348 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 744.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 1.938750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.93875 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -1.211750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.21175 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -21.082000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.0820 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 751.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 3.846412 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.84641 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -3.951412 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.95141 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -22.701353 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.7014 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 771.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.289200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.289200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.981200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.98120 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.836700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.8367 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 788.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 4.240769 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.24077 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -11.256000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.2560 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -16.391462 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.3915 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 812.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -0.811706 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.811706 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -12.814882 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.8149 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -20.557118 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.5571 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 832.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -0.069154 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.691538E-01 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -18.687000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.6870 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -15.983308 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.9833 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 856.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.883200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.883200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -21.410900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.4109 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -19.628800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.6288 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 875.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.286500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 3.28650 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.245200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -24.2452 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.268000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.2680 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 897.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 1.239250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.23925 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -26.442250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -26.4423 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -20.571250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.5713 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 904.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 0.526615 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.526615 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -25.003077 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -25.0031 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -24.941077 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.9411 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 928.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.952600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.95260 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -20.856000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.8560 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.236500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.2365 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 947.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 7.121889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.12189 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -21.510611 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.5106 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -23.259222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.2592 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 968.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 5.310750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.31075 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -16.806000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.8060 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -19.637250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.6373 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 982.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 4.702875 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.70288 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -14.197375 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.1974 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -22.892625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.8926 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 993.000 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.645900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.64590 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.989600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.98960 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.230000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.2300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1012.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 1.815556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.81556 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.662222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.66222 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -24.420444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.4204 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1028.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 1.099750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.09975 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.112250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.11225 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -25.042500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.0425 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1042.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -2.142000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.14200 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -3.634125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.63413 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -21.959500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.9595 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1053.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.758300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.75830 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.252200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.25220 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.695800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.6958 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1068.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.176200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.17620 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.608500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.608500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.742400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.7424 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1090.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -0.902250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.902250 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -2.365750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.36575 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -18.038000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -18.0380 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1097.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.967600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.967600 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.946500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.94650 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.089000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.0890 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1112.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 5.115556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.11556 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -5.729778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.72978 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -16.315667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.3157 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1128.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 5.412500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.41250 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -4.739500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.73950 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -11.525357 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.5254 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1146.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 10.209000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.2090 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -7.256500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.25650 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -12.224250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.2243 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1153.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 13.549400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.5494 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.973800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.97380 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.533100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.5331 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1175.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 16.176333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.1763 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.702889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.70289 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.838444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -14.8384 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1191.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 19.048100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.0481 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.761200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.76120 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.956200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.9562 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1210.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 21.870333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 21.8703 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -3.103667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.10367 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -15.299222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.2992 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1227.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 25.808750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.8088 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -4.805500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.80550 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -17.185750 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.1858 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1234.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 25.203111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 25.2031 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.664333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.66433 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -20.150000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.1500 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1250.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 28.897800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.8978 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.228500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.22850 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.281900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.2819 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1264.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 28.295000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 28.2950 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -5.951500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.95150 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -26.559375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.5594 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1275.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 29.589778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 29.5898 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.521889 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.52189 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -26.583111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.5831 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1287.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 26.713700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 26.7137 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.145900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.1459 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.308600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.3086 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1302.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 23.183000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.1830 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.106900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.10690 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -25.941700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.9417 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1321.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 23.506500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.5065 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.442600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.44260 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -30.273900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.2739 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1336.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 23.649889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 23.6499 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.614333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.6143 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -26.522667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.5227 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1350.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 20.780800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 20.7808 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.121900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -12.1219 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.426500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.4265 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1369.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 18.050889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.0509 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -11.337778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.3378 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -29.239778 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.2398 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1381.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 19.789667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 19.7897 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -14.997833 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.9978 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -30.057500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.0575 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1391.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 18.947333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 18.9473 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.068667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.0687 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -26.675444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.6754 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1407.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 14.206500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.2065 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.533000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.5330 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -26.054800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -26.0548 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1422.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 14.844250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.8443 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -15.436000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.4360 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -30.713000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -30.7130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1429.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 15.182111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.1821 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.102333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -19.1023 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -31.192000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.1920 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1443.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.040800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.0408 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -18.725600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.7256 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -29.429900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.4299 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1458.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 10.011222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.0112 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -15.330722 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -15.3307 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -27.076667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.0767 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1479.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.515500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.5155 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.766200 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.76620 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -31.394500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.3945 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1494.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 15.713692 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.7137 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -6.585385 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.58538 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -29.585692 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.5857 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1518.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 10.955778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.9558 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.716111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -4.71611 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -28.563667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.5637 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1534.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.240100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.2401 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.563000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.563000 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -27.358400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.3584 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1548.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 10.181222 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.1812 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.938222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.938222 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -23.610444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.6104 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1564.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 9.706500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.70650 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 1.369750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 1.36975 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -20.632250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.6323 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1571.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 11.485200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.4852 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.572100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.572100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -17.170400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.1704 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1590.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 9.934444 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.93444 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 2.937667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.93767 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.892444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.8924 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1606.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 14.754154 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 14.7542 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 2.355231 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.35523 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -10.060769 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -10.0608 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1630.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 10.280500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 10.2805 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.706800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.706800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.354400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.35440 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1645.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 13.689778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.6898 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 2.389778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.38978 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -5.570333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.57033 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1657.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 11.956333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 11.9563 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 6.180222 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.18022 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.140556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.14056 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1671.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 9.951250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 9.95125 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 7.644000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.64400 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -9.405625 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.40562 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1682.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 13.965200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.9652 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.409300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.40930 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.225500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -11.2255 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1697.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.484700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.4847 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.316000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.31600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.925900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -15.9259 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1719.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 15.364556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.3646 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 3.635667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.63567 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.314111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -17.3141 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1736.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 15.220667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.2207 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = 2.668000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.66800 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -20.985833 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -20.9858 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1746.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 15.533000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 15.5330 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.185000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.18500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.175222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -21.1752 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1762.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 16.303800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 16.3038 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.061800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.06180 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -24.806800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.8068 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1784.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 12.087000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 12.0870 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -6.459600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -6.45960 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -23.182400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -23.1824 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1798.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = 13.703833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 13.7038 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -10.671722 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.6717 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 18 atoms have been selected out of 2794 SHOW: average of selected elements = -24.978944 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -24.9789 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1819.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 7.069111 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 7.06911 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -8.590444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.59044 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -27.391889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.3919 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1836.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 4.857571 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 4.85757 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -14.786333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.7863 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -28.138476 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -28.1385 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1860.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.860200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 5.86020 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.976300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.9763 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -32.252200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.2522 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1879.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 1.604333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.60433 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.605333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.6053 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -32.268889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -32.2689 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1893.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.296400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 0.296400 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.345400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -10.3454 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -29.985700 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.9857 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1915.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -3.172833 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.17283 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -13.921667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.9217 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 6 atoms have been selected out of 2794 SHOW: average of selected elements = -31.123333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.1233 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1925.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -2.089333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.08933 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.798000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.7980 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -31.152111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -31.1521 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1937.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -4.334250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.33425 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -20.446500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -20.4465 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -29.298375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -29.2984 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1951.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -0.797778 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -0.797778 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -21.244667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -21.2447 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -27.820556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -27.8206 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1963.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -1.311667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -1.31167 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -17.646333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -17.6463 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -25.140667 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -25.1407 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 1980.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -7.197118 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.19712 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -18.397647 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -18.3976 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -22.611765 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -22.6118 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2000.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -3.538750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -3.53875 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -16.356500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -16.3565 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -19.132250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -19.1323 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2007.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.853500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.85350 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.070800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0708 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.106500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -16.1065 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2022.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = 2.004619 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 2.00462 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -13.408857 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -13.4089 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -12.512714 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -12.5127 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2046.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -2.452556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.45256 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -14.015667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -14.0157 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -9.422444 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.42244 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2060.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 1.134765 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to 1.13476 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -8.940118 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.94012 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -9.568294 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.56829 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2080.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.323100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.32310 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.165600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -9.16560 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.482500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -13.4825 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2095.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.307200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.30720 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -11.273600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -11.2736 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.256300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -9.25630 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2110.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -2.959381 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -2.95938 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -7.882571 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.88257 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 21 atoms have been selected out of 2794 SHOW: average of selected elements = -4.123381 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.12338 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2134.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.063000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.06300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.992800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.99280 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.941300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.94130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2156.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -11.045923 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -11.0459 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -7.768846 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -7.76885 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -7.091385 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.09138 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2180.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.377200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -8.37720 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.304100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -8.30410 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.203200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.20320 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2199.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -4.223214 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.22321 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -3.019357 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -3.01936 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -3.097500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.09750 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2217.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.525200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.5252 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -2.107100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -2.10710 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -3.021000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -3.02100 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2239.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.703500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.70350 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.032800 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -5.03280 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.496600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.49660 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2261.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -5.266400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -5.26640 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.754300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.75430 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.590800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.59080 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2283.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -7.208294 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.20829 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 2.120118 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.12012 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -0.761353 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -0.761353 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2303.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -12.387400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.3874 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.456600 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.456600 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 1.959300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.95930 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2322.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -9.645300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -9.64530 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -1.555000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -1.55500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.138200 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.13820 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2337.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -10.092600 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.0926 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.884900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.88490 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.317100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.31710 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2351.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = -12.944294 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -12.9443 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 5.265294 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.26529 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 17 atoms have been selected out of 2794 SHOW: average of selected elements = 2.016353 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.01635 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2371.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.121100 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.1211 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.216100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.216100 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.616900 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.61690 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2393.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -14.274500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -14.2745 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.475900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.47590 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.297300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.29730 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2415.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -15.909800 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -15.9098 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 7.334900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 7.33490 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 5.682500 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 5.68250 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2434.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -19.347333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -19.3473 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 4.342111 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 4.34211 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 4.462333 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 4.46233 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2451.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -20.065700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -20.0657 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.613900 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 6.61390 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.663100 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.66310 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2466.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -21.631375 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -21.6314 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 10.194250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.1943 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 6.971375 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.97138 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2477.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.946300 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -22.9463 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 8.522400 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.52240 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.137000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.13700 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2499.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -26.035900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -26.0359 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.871100 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 3.87110 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.003800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.00380 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2521.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.965200 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -22.9652 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 0.763700 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.763700 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 6.091800 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.09180 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2543.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -22.075625 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -22.0756 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 2.418125 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.41813 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 10.435250 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.4353 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 7 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2557.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -19.335700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -19.3357 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -0.535500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to -0.535500 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.191300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 9.19130 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2574.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -16.648250 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -16.6483 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 0.108750 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 0.108750 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 12.335000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.3350 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2581.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -13.599400 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -13.5994 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 2.579300 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.57930 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 14.699400 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 14.6994 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2598.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = -10.414750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.4148 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 2.834500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 2.83450 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 4 atoms have been selected out of 2794 SHOW: average of selected elements = 12.779000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 12.7790 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 3 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2605.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.192667 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.19267 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 5.030444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 5.03044 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 11.632111 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 11.6321 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2619.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -7.213000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.21300 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 8.783556 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.78356 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 10.660222 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 10.6602 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2631.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -4.420556 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -4.42056 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 8.303444 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 8.30344 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 6.619556 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 6.61956 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2643.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -7.648900 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.64890 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 9.509000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 9.50900 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 3.410000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 3.41000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2662.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = -7.761750 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -7.76175 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 13.777250 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.7773 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 8 atoms have been selected out of 2794 SHOW: average of selected elements = 2.030000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 2.03000 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 5 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2673.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = -10.907000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -10.9070 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 16.444929 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 16.4449 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 14 atoms have been selected out of 2794 SHOW: average of selected elements = 1.271571 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to 1.27157 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 8 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2691.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -13.009000 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -13.0090 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 13.144333 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 13.1443 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -2.063000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -2.06300 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 9 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2707.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -16.070700 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -16.0707 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 15.564500 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 15.5645 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -4.679300 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -4.67930 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 11 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2726.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -19.368692 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -19.3687 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = 10.913769 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 10.9138 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 13 atoms have been selected out of 2794 SHOW: average of selected elements = -7.063385 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -7.06338 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 13 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2750.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -22.007500 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -22.0075 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = 14.531000 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 14.5310 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 10 atoms have been selected out of 2794 SHOW: average of selected elements = -8.830600 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -8.83060 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 6 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2765.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -25.118333 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -25.1183 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 12.015667 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 12.0157 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -5.817889 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -5.81789 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 4 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco FOR ID LOOP: symbol ID set to 2777.00 (real) CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -30.102889 CNSsolve> evaluate ($ave_x=$result) EVALUATE: symbol $AVE_X set to -30.1029 (real) CNSsolve> show ave(y) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = 11.895778 CNSsolve> evaluate ($ave_y=$result) EVALUATE: symbol $AVE_Y set to 11.8958 (real) CNSsolve> show ave(z) (byres(id $id) and known) SELRPN: 9 atoms have been selected out of 2794 SHOW: average of selected elements = -6.062000 CNSsolve> evaluate ($ave_z=$result) EVALUATE: symbol $AVE_Z set to -6.06200 (real) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (y=$ave_y) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> do (z=$ave_z) (byres(id $id) and store1) SELRPN: 10 atoms have been selected out of 2794 CNSsolve> CNSsolve> end loop avco CNSsolve> for $id in id (tag and byres(store1)) loop avco CNSsolve> CNSsolve> show ave(x) (byres(id $id) and known) CNSsolve> evaluate ($ave_x=$result) CNSsolve> show ave(y) (byres(id $id) and known) CNSsolve> evaluate ($ave_y=$result) CNSsolve> show ave(z) (byres(id $id) and known) CNSsolve> evaluate ($ave_z=$result) CNSsolve> CNSsolve> do (x=$ave_x) (byres(id $id) and store1) CNSsolve> do (y=$ave_y) (byres(id $id) and store1) CNSsolve> do (z=$ave_z) (byres(id $id) and store1) CNSsolve> CNSsolve> end loop avco CNSsolve> CNSsolve> do (x=x+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (y=y+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (z=z+random(2.0)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> {- start parameter for the side chain building -} CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=20. nbxmod=-2 repel=0.9 wmin=0.1 tolerance=1. NBDSET> rexp=2 irexp=2 inhibit=0.25 NBDSET> end PARRDR> end CNSsolve> CNSsolve> {- Friction coefficient, in 1/ps. -} CNSsolve> do (fbeta=100) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> evaluate ($bath=300.0) EVALUATE: symbol $BATH set to 300.000 (real) CNSsolve> evaluate ($nstep=500) EVALUATE: symbol $NSTEP set to 500.000 (real) CNSsolve> evaluate ($timestep=0.0005) EVALUATE: symbol $TIMESTEP set to 0.500000E-03 (real) CNSsolve> CNSsolve> do (refy=mass) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (mass=20) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> igroup interaction SELRPN> (store1) (store1 or known) SELRPN: 1383 atoms have been selected out of 2794 SELRPN: 2794 atoms have been selected out of 2794 IGROup> end CNSsolve> CNSsolve> {- turn on initial energy terms -} CNSsolve> flags exclude * include bond angle vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-2 MAKINB: mode -2 found 1383 exclusions and 0 interactions(1-4) %atoms " -7 -HIS -HN " and " -7 -HIS -HB1 " only 0.09 A apart %atoms " -31 -VAL -HN " and " -31 -VAL -HG23" only 0.08 A apart %atoms " -54 -ARG -HA " and " -54 -ARG -HH22" only 0.07 A apart %atoms " -59 -LEU -HN " and " -59 -LEU -HB2 " only 0.03 A apart %atoms " -62 -CYS -HN " and " -62 -CYS -HB1 " only 0.07 A apart %atoms " -68 -LYS -HN " and " -68 -LYS -HZ2 " only 0.06 A apart %atoms " -74 -LYS -HE1 " and " -74 -LYS -HZ3 " only 0.10 A apart %atoms " -136 -LYS -HB2 " and " -136 -LYS -HD1 " only 0.06 A apart %atoms " -143 -PHE -HE1 " and " -143 -PHE -HZ " only 0.05 A apart %atoms " -144 -ILE -HB " and " -144 -ILE -HG22" only 0.07 A apart %atoms " -148 -LYS -HE1 " and " -148 -LYS -HE2 " only 0.07 A apart %atoms " -159 -GLY -HN " and " -159 -GLY -HA2 " only 0.05 A apart %atoms " -168 -VAL -HG11" and " -168 -VAL -HG23" only 0.03 A apart NBONDS: found 166399 intra-atom interactions NBONDS: found 13 nonbonded violations %atoms " -23 -TYR -HA " and " -23 -TYR -HB2 " only 0.07 A apart %atoms " -34 -VAL -HA " and " -34 -VAL -HG11" only 0.08 A apart %atoms " -139 -HIS -HA " and " -139 -HIS -HB2 " only 0.09 A apart NBONDS: found 165923 intra-atom interactions NBONDS: found 3 nonbonded violations %atoms " -36 -LEU -HD12" and " -38 -ARG -O " only 0.10 A apart NBONDS: found 152734 intra-atom interactions NBONDS: found 1 nonbonded violations %atoms " -65 -PRO -HB1 " and " -65 -PRO -HG2 " only 0.06 A apart NBONDS: found 158072 intra-atom interactions NBONDS: found 1 nonbonded violations NBONDS: found 154194 intra-atom interactions NBONDS: found 155515 intra-atom interactions NBONDS: found 156020 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0005 ----------------------- | Etotal =725250.245 grad(E)=577.838 E(BOND)=103743.608 E(ANGL)=343229.170 | | E(VDW )=278277.466 | ------------------------------------------------------------------------------- NBONDS: found 156839 intra-atom interactions NBONDS: found 156764 intra-atom interactions NBONDS: found 156521 intra-atom interactions NBONDS: found 156746 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0006 ----------------------- | Etotal =249233.558 grad(E)=341.967 E(BOND)=41516.166 E(ANGL)=83888.831 | | E(VDW )=123828.561 | ------------------------------------------------------------------------------- NBONDS: found 156750 intra-atom interactions NBONDS: found 156574 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0006 ----------------------- | Etotal =206871.113 grad(E)=310.678 E(BOND)=34626.813 E(ANGL)=61842.025 | | E(VDW )=110402.274 | ------------------------------------------------------------------------------- NBONDS: found 156564 intra-atom interactions NBONDS: found 156626 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0006 ----------------------- | Etotal =205626.615 grad(E)=310.703 E(BOND)=34721.322 E(ANGL)=61322.342 | | E(VDW )=109582.951 | ------------------------------------------------------------------------------- NBONDS: found 156630 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0007 ----------------------- | Etotal =203884.750 grad(E)=309.249 E(BOND)=34772.001 E(ANGL)=60406.354 | | E(VDW )=108706.395 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> flags exclude vdw include impr end CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=815866.155 E(kin)=1260.215 temperature=305.697 | | Etotal =814605.939 grad(E)=577.268 E(BOND)=34772.001 E(ANGL)=60406.354 | | E(IMPR)=719427.584 | ------------------------------------------------------------------------------- -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=516669.989 E(kin)=90082.611 temperature=21851.835 | | Etotal =426587.377 grad(E)=331.774 E(BOND)=56151.460 E(ANGL)=160513.943 | | E(IMPR)=209921.975 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 5.57419 -5.09607 -13.21628 velocity [A/ps] : -0.08445 -0.12234 0.41239 ang. mom. [amu A/ps] : 50770.96605 367187.63487-462220.54116 kin. ener. [Kcal/mol] : 6.35180 CNSsolve> CNSsolve> flags include vdw end CNSsolve> CNSsolve> minimize powell nstep=50 nprint=10 end POWELL: number of degrees of freedom= 4149 NBONDS: found 156064 intra-atom interactions NBONDS: found 155828 intra-atom interactions NBONDS: found 156127 intra-atom interactions NBONDS: found 156230 intra-atom interactions NBONDS: found 156262 intra-atom interactions --------------- cycle= 10 ------ stepsize= 0.0003 ----------------------- | Etotal =425928.355 grad(E)=348.251 E(BOND)=48986.515 E(ANGL)=103624.776 | | E(IMPR)=199967.628 E(VDW )=73349.435 | ------------------------------------------------------------------------------- NBONDS: found 156671 intra-atom interactions NBONDS: found 156589 intra-atom interactions NBONDS: found 156547 intra-atom interactions --------------- cycle= 20 ------ stepsize= 0.0000 ----------------------- | Etotal =274742.540 grad(E)=264.349 E(BOND)=35069.367 E(ANGL)=52776.210 | | E(IMPR)=112873.558 E(VDW )=74023.405 | ------------------------------------------------------------------------------- NBONDS: found 156630 intra-atom interactions NBONDS: found 156643 intra-atom interactions NBONDS: found 156675 intra-atom interactions --------------- cycle= 30 ------ stepsize= 0.0000 ----------------------- | Etotal =216096.845 grad(E)=254.446 E(BOND)=33061.013 E(ANGL)=34907.391 | | E(IMPR)=78847.921 E(VDW )=69280.519 | ------------------------------------------------------------------------------- NBONDS: found 156667 intra-atom interactions NBONDS: found 156606 intra-atom interactions --------------- cycle= 40 ------ stepsize= 0.0002 ----------------------- | Etotal =187310.508 grad(E)=249.608 E(BOND)=31307.783 E(ANGL)=28710.168 | | E(IMPR)=59964.006 E(VDW )=67328.551 | ------------------------------------------------------------------------------- NBONDS: found 156487 intra-atom interactions NBONDS: found 156480 intra-atom interactions NBONDS: found 156578 intra-atom interactions --------------- cycle= 50 ------ stepsize= -0.0001 ----------------------- | Etotal =166178.696 grad(E)=246.285 E(BOND)=30992.072 E(ANGL)=21493.243 | | E(IMPR)=48219.459 E(VDW )=65473.922 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=50 Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=167392.102 E(kin)=1213.406 temperature=294.342 | | Etotal =166178.696 grad(E)=246.285 E(BOND)=30992.072 E(ANGL)=21493.243 | | E(IMPR)=48219.459 E(VDW )=65473.922 | ------------------------------------------------------------------------------- NBONDS: found 156616 intra-atom interactions NBONDS: found 156590 intra-atom interactions -------------------- final step= 50 at 0.02500 ps --------------------- | E(kin)+E(total)=162957.217 E(kin)=3105.965 temperature=753.431 | | Etotal =159851.251 grad(E)=246.814 E(BOND)=31105.292 E(ANGL)=19670.134 | | E(IMPR)=44134.271 E(VDW )=64941.554 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 5.57585 -5.08985 -13.20003 velocity [A/ps] : -0.00641 -0.21425 0.12639 ang. mom. [amu A/ps] : -6966.15927 -81930.95677-112118.89119 kin. ener. [Kcal/mol] : 2.04670 CNSsolve> CNSsolve> parameter PARRDR> nbonds NBDSET> rcon=2. nbxmod=-3 repel=0.75 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=100 nprint=25 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 153387 intra-atom interactions NBONDS: found 154190 intra-atom interactions NBONDS: found 154108 intra-atom interactions NBONDS: found 154231 intra-atom interactions NBONDS: found 154165 intra-atom interactions --------------- cycle= 25 ------ stepsize= -0.0002 ----------------------- | Etotal =43064.742 grad(E)=31.471 E(BOND)=1333.875 E(ANGL)=10141.365 | | E(IMPR)=31589.282 E(VDW )=0.220 | ------------------------------------------------------------------------------- NBONDS: found 154145 intra-atom interactions NBONDS: found 154166 intra-atom interactions NBONDS: found 154175 intra-atom interactions NBONDS: found 154134 intra-atom interactions NBONDS: found 154074 intra-atom interactions --------------- cycle= 50 ------ stepsize= -0.0002 ----------------------- | Etotal =24716.316 grad(E)=55.479 E(BOND)=1881.541 E(ANGL)=11558.182 | | E(IMPR)=11259.936 E(VDW )=16.656 | ------------------------------------------------------------------------------- NBONDS: found 154114 intra-atom interactions NBONDS: found 154111 intra-atom interactions NBONDS: found 154186 intra-atom interactions --------------- cycle= 75 ------ stepsize= 0.0006 ----------------------- | Etotal =1954.094 grad(E)=3.759 E(BOND)=69.050 E(ANGL)=462.490 | | E(IMPR)=1422.554 E(VDW )=0.000 | ------------------------------------------------------------------------------- NBONDS: found 154149 intra-atom interactions NBONDS: found 154168 intra-atom interactions --------------- cycle= 100 ------ stepsize= 0.0005 ----------------------- | Etotal =39.635 grad(E)=2.693 E(BOND)=0.056 E(ANGL)=38.373 | | E(IMPR)=1.206 E(VDW )=0.000 | ------------------------------------------------------------------------------- POWELL: STEP number limit. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1313.766 E(kin)=1274.131 temperature=309.073 | | Etotal =39.635 grad(E)=2.693 E(BOND)=0.056 E(ANGL)=38.373 | | E(IMPR)=1.206 E(VDW )=0.000 | ------------------------------------------------------------------------------- NBONDS: found 154136 intra-atom interactions NBONDS: found 154097 intra-atom interactions NBONDS: found 154110 intra-atom interactions NBONDS: found 154126 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2201.571 E(kin)=1372.752 temperature=332.996 | | Etotal =828.819 grad(E)=28.399 E(BOND)=176.935 E(ANGL)=533.320 | | E(IMPR)=116.470 E(VDW )=2.095 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 5.57195 -5.08877 -13.20483 velocity [A/ps] : 0.07823 0.05560 0.02107 ang. mom. [amu A/ps] : 15616.78125 -55218.67559 70314.32248 kin. ener. [Kcal/mol] : 0.31914 CNSsolve> CNSsolve> {- turn on all energy terms -} CNSsolve> flags include dihe ? end EFLAGS: the following energy flags are set EFLAGS: BOND ANGL DIHE IMPR VDW CNSsolve> CNSsolve> {- set repel to ~vdw radii -} CNSsolve> parameter PARRDR> nbonds NBDSET> repel=0.89 NBDSET> end PARRDR> end CNSsolve> CNSsolve> minimize powell nstep=500 nprint=50 end POWELL: number of degrees of freedom= 4149 NBONDS: generating intra-molecular exclusion list with mode=-3 MAKINB: mode -3 found 4550 exclusions and 0 interactions(1-4) NBONDS: found 154193 intra-atom interactions NBONDS: found 154163 intra-atom interactions NBONDS: found 154169 intra-atom interactions --------------- cycle= 50 ------ stepsize= 0.0012 ----------------------- | Etotal =166.695 grad(E)=3.312 E(BOND)=1.678 E(ANGL)=39.943 | | E(DIHE)=78.131 E(IMPR)=1.924 E(VDW )=45.020 | ------------------------------------------------------------------------------- NBONDS: found 154140 intra-atom interactions --------------- cycle= 100 ------ stepsize= 0.0008 ----------------------- | Etotal =108.973 grad(E)=2.752 E(BOND)=1.079 E(ANGL)=37.286 | | E(DIHE)=28.917 E(IMPR)=1.467 E(VDW )=40.224 | ------------------------------------------------------------------------------- NBONDS: found 154133 intra-atom interactions --------------- cycle= 150 ------ stepsize= 0.0011 ----------------------- | Etotal =87.548 grad(E)=2.627 E(BOND)=0.498 E(ANGL)=36.923 | | E(DIHE)=17.537 E(IMPR)=1.470 E(VDW )=31.120 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= 0.0010 ----------------------- | Etotal =78.931 grad(E)=2.582 E(BOND)=0.453 E(ANGL)=36.772 | | E(DIHE)=9.712 E(IMPR)=1.445 E(VDW )=30.548 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= 0.0011 ----------------------- | Etotal =77.418 grad(E)=2.569 E(BOND)=0.433 E(ANGL)=36.724 | | E(DIHE)=9.019 E(IMPR)=1.394 E(VDW )=29.847 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= 0.0009 ----------------------- | Etotal =77.283 grad(E)=2.570 E(BOND)=0.434 E(ANGL)=36.723 | | E(DIHE)=8.800 E(IMPR)=1.395 E(VDW )=29.932 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0002 ----------------------- | Etotal =77.202 grad(E)=2.568 E(BOND)=0.429 E(ANGL)=36.725 | | E(DIHE)=8.844 E(IMPR)=1.392 E(VDW )=29.811 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0007 ----------------------- | Etotal =77.193 grad(E)=2.567 E(BOND)=0.428 E(ANGL)=36.721 | | E(DIHE)=8.861 E(IMPR)=1.391 E(VDW )=29.792 | ------------------------------------------------------------------------------- --------------- cycle= 450 ------ stepsize= -0.0003 ----------------------- | Etotal =77.193 grad(E)=2.567 E(BOND)=0.428 E(ANGL)=36.722 | | E(DIHE)=8.857 E(IMPR)=1.391 E(VDW )=29.795 | ------------------------------------------------------------------------------- POWELL: Gradient converged. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> flags exclude * include bond angl impr dihe vdw end CNSsolve> CNSsolve> {- return masses to something sensible -} CNSsolve> do (mass=refy) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> do (vx=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vy=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> do (vz=maxwell($bath)) (store1) SELRPN: 1383 atoms have been selected out of 2794 CNSsolve> CNSsolve> dynamics cartesian Cartesian Dynamics> nstep=$nstep Cartesian Dynamics> timestep=$timestep Cartesian Dynamics> tcoupling=true temperature=$bath DCART: temperature coupling (TCOUpling) enabled Cartesian Dynamics> nprint=$nstep Cartesian Dynamics> cmremove=false Cartesian Dynamics> end -------------------------- Cartesian dynamics start --------------------------- | E(kin)+E(total)=1343.699 E(kin)=1266.506 temperature=307.223 | | Etotal =77.193 grad(E)=2.567 E(BOND)=0.428 E(ANGL)=36.722 | | E(DIHE)=8.857 E(IMPR)=1.391 E(VDW )=29.795 | ------------------------------------------------------------------------------- NBONDS: found 154079 intra-atom interactions NBONDS: found 154036 intra-atom interactions NBONDS: found 154052 intra-atom interactions NBONDS: found 154117 intra-atom interactions NBONDS: found 154134 intra-atom interactions NBONDS: found 154156 intra-atom interactions NBONDS: found 154132 intra-atom interactions NBONDS: found 154140 intra-atom interactions NBONDS: found 154188 intra-atom interactions NBONDS: found 154177 intra-atom interactions NBONDS: found 154155 intra-atom interactions NBONDS: found 154181 intra-atom interactions NBONDS: found 154137 intra-atom interactions NBONDS: found 154061 intra-atom interactions NBONDS: found 154027 intra-atom interactions -------------------- final step= 500 at 0.25000 ps --------------------- | E(kin)+E(total)=2524.285 E(kin)=1387.202 temperature=336.501 | | Etotal =1137.083 grad(E)=32.564 E(BOND)=192.125 E(ANGL)=716.686 | | E(DIHE)=61.749 E(IMPR)=123.118 E(VDW )=43.405 | ------------------------------------------------------------------------------- CENMAS: Information about center of free masses position [A] : 4.85049 -4.70557 -13.03292 velocity [A/ps] : 0.23148 -0.67063 -0.41318 ang. mom. [amu A/ps] : 6395.78099 2173.25001 -2857.98671 kin. ener. [Kcal/mol] : 1.14708 CNSsolve> CNSsolve> {- some final minimisation -} CNSsolve> minimize powell POWELL> nstep=500 POWELL> drop=40.0 POWELL> nprint=50 POWELL> end POWELL: number of degrees of freedom= 4149 --------------- cycle= 50 ------ stepsize= -0.0001 ----------------------- | Etotal =101.542 grad(E)=2.726 E(BOND)=0.515 E(ANGL)=37.860 | | E(DIHE)=28.725 E(IMPR)=1.458 E(VDW )=32.984 | ------------------------------------------------------------------------------- --------------- cycle= 100 ------ stepsize= 0.0004 ----------------------- | Etotal =87.558 grad(E)=2.613 E(BOND)=0.452 E(ANGL)=36.910 | | E(DIHE)=18.588 E(IMPR)=1.418 E(VDW )=30.190 | ------------------------------------------------------------------------------- NBONDS: found 154063 intra-atom interactions --------------- cycle= 150 ------ stepsize= 0.0005 ----------------------- | Etotal =78.986 grad(E)=2.600 E(BOND)=0.455 E(ANGL)=36.804 | | E(DIHE)=9.495 E(IMPR)=1.430 E(VDW )=30.802 | ------------------------------------------------------------------------------- --------------- cycle= 200 ------ stepsize= 0.0010 ----------------------- | Etotal =77.393 grad(E)=2.571 E(BOND)=0.431 E(ANGL)=36.733 | | E(DIHE)=9.190 E(IMPR)=1.405 E(VDW )=29.634 | ------------------------------------------------------------------------------- --------------- cycle= 250 ------ stepsize= 0.0000 ----------------------- | Etotal =77.205 grad(E)=2.568 E(BOND)=0.429 E(ANGL)=36.722 | | E(DIHE)=8.872 E(IMPR)=1.391 E(VDW )=29.791 | ------------------------------------------------------------------------------- --------------- cycle= 300 ------ stepsize= 0.0004 ----------------------- | Etotal =77.194 grad(E)=2.567 E(BOND)=0.428 E(ANGL)=36.722 | | E(DIHE)=8.858 E(IMPR)=1.391 E(VDW )=29.795 | ------------------------------------------------------------------------------- --------------- cycle= 350 ------ stepsize= 0.0003 ----------------------- | Etotal =77.193 grad(E)=2.567 E(BOND)=0.428 E(ANGL)=36.722 | | E(DIHE)=8.857 E(IMPR)=1.391 E(VDW )=29.795 | ------------------------------------------------------------------------------- --------------- cycle= 400 ------ stepsize= 0.0001 ----------------------- | Etotal =77.193 grad(E)=2.567 E(BOND)=0.428 E(ANGL)=36.722 | | E(DIHE)=8.857 E(IMPR)=1.391 E(VDW )=29.795 | ------------------------------------------------------------------------------- POWELL: Gradient converged. Normal termination POWELL: Current coordinates set to last minimum CNSsolve> CNSsolve> print thres=0.02 bonds (atom-i |atom-j ) dist. equil. delta energy const. Number of violations greater 0.020: 0 RMS deviation= 0.001 CNSsolve> print thres=5. angles (atom-i |atom-j |atom-k ) angle equil. delta energy const. Number of violations greater 5.000: 0 RMS deviation= 0.276 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> fix selection=( none ) end SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 0 atoms have been selected out of 2794 SHOW: zero atoms selected NEXTCD: condition evaluated as true SELRPN: 0 atoms have been selected out of 2794 CNSsolve> CNSsolve> if (&set_bfactor=true) then NEXTCD: condition evaluated as false CNSsolve> do (b=&bfactor) ( all ) CNSsolve> else CNSsolve> show ave(b) (known and not(store1)) SELRPN: 1411 atoms have been selected out of 2794 SHOW: average of selected elements = 38.420978 CNSsolve> do (b=$result) (store1 and (attr b < 0.01)) SELRPN: 1047 atoms have been selected out of 2794 CNSsolve> end if CNSsolve> CNSsolve> if (&set_occupancy=true) then NEXTCD: condition evaluated as false CNSsolve> do (q=&occupancy) ( all ) CNSsolve> end if CNSsolve> CNSsolve> set echo=false end SELRPN: 1383 atoms have been selected out of 2794 SHOW: sum over selected elements = 1383.000000 NEXTCD: condition evaluated as false CNSsolve> CNSsolve> set remarks=reset end CNSsolve> CNSsolve> buffer message BUFFER> to=remarks BUFFER> dump BUFFER> end CNSsolve> CNSsolve> write coordinates output=&coordinate_outfile end ASSFIL: file 1xxx_1_cns.pdb opened. CNSsolve> CNSsolve>stop HEAP: maximum use = 1653264 current use = 0 bytes HEAP: maximum overhead = 920 current overhead = 64 bytes ============================================================ Maximum dynamic memory allocation: 1653264 bytes Maximum dynamic memory overhead: 920 bytes Program started at: 10:55:47 on 4-Feb-06 Program stopped at: 10:56:30 on 4-Feb-06 CPU time used: 43.3300 seconds ============================================================